Как доказать что прямые пересекаются
Перейти к содержимому

Как доказать что прямые пересекаются

  • автор:

5.5.5. Пересекающиеся прямые в пространстве

Пересекающиеся прямые пространства обязательно лежат в одной плоскости, причём их направляющие векторы неколлинеарны:

Первая мысль – всеми силами навалиться на точку пересечения .

И тут сразу же подумалось, зачем себе отказывать в правильных желаниях?! Давайте навалимся на неё прямо сейчас!

Как найти точку пересечения пространственных прямых?

Задача 156

Найти точку пересечения прямых

Решение: Перепишем уравнения прямых в параметрической форме:

Приём решения стандартен и уже встречался, когда мы вымучивали уравнения общего перпендикуляра скрещивающихся прямых.

Точка пересечения прямых принадлежит прямой , поэтому её координаты удовлетворяют параметрическим уравнениям данной прямой, и им соответствует вполне конкретное значение параметра :

Но эта же точка принадлежит и второй прямой, следовательно, существует значение , такое, что:

Приравниваем соответствующие уравнения и проводим упрощения:

Получена система трёх линейных уравнений с двумя неизвестными, которую опять же решим «школьным» способом. Из 1-го уравнения выразим – подставим в два нижних уравнения:

В результате получилась совместная система, из которой следует, что . Тогда:

Подставим найденное значение параметра в уравнения координат точки:
, и для проверки подставим значение в уравнения:

Ответ:

Теперь рассмотрим особый случай пересечения прямых:

Автор: Aлeксaндр Eмeлин

Пересекающиеся прямые

Пересекающиеся прямые — это прямые, лежащие в одной плоскости и имеющие одну общую точку, которую называют точкой пересечения прямых.

Пересекающиеся прямые

Пересекающиеся прямые

Так как проекция прямой есть прямая, то проекцией пересекающихся прямых будут их пересекающиеся проекции:

$ a ∩ b ⇒ a` ∩ b` = K` ^ a» ∩ b» = K» $

Чтобы определить на эпюре (комплексном чертеже), пересекаются ли данные прямые в пространстве, достаточно провести линию связи из одной точки пересечения проекций к другой. Если проекции точки пересечения прямых будут лежать на одной линии связи, то прямые пересекаются. Чтобы построить на эпюре (комплексном чертеже), пересекающиеся прямые в пространстве, достаточно провести линию связи из одной точки пересечения проекций прямых к другой. Проекцию точки пересечения прямых на другой плоскости проекций находим в пересечении линии проекционной связи, с проекцией одной из пересекающихся прямых, через нее проводим проекцию другой прямой. Если одна из прямых параллельна профильной плоскости проекций, то для определения положения точки пересечения прямых в пространстве необходимо построить третью (профильную) проекцию.

Пересекающиеся прямые

Пересекающиеся прямые

Построить проекции прямой d, пересекающей заданные прямые a, b и c

Пересекающиеся прямые

Пересекающиеся прямые

Продолжив проекции прямых a и b находим M` =a` ∩ b` и M»=a» ∩ b» проекции точки M, которые совпадают а поэтому находятся на одной линии проекционной связи и следовательно a и b пересекающиеся прямые. Через точку M пересечения прямых a, b и прямую c проводим прямую d(d`, d»): M=a ∩ b; N`= c` ∩ d` ^ N»= c» ∩ d»; N ∈ d ^ M ∈ d

5.5.1. Взаимное расположение прямых

Случай № 1 принципиально отличается от других случаев. Две прямые скрещиваются, если они не лежат в одной плоскости. Поднимите одну руку вверх, а другую руку вытяните вперёд – вот вам и пример скрещивающихся прямых. В пунктах же № 2-4 прямые обязательно лежат в одной плоскости.

Как выяснить взаимное расположение прямых в пространстве?

Рассмотрим общий алгоритм и две прямые:
– прямую , заданную точкой и направляющим вектором ;
– прямую , заданную точкой и направляющим вектором .

Для лучшего понимания выполним схематический чертёж, на котором в качестве примера изображены скрещивающиеся прямые
Так как известны точки , то легко найти вектор .

1) Если прямые скрещиваются, то векторы не компланарны, а, значит, определитель, составленный из их координат, ненулевой. Или, что фактически то же самое, смешанное произведение векторов отлично от нуля:

Пусть . Это означает, что векторы компланарны, и вся конструкция «схлопнулась» в одну плоскость. Следовательно, прямые либо пересекаются, либо параллельны, либо совпадают.

2) Если направляющие векторы не коллинеарны, то прямые пересекаются.

3-4) Если направляющие векторы коллинеарны, то прямые либо параллельны, либо совпадают. Финальным гвоздём предлагаю следующий приём: берём какую-либо точку одной прямой и подставляем её координаты в уравнение другой прямой. Если координаты «подошли», то прямые совпадают, если нет – то прямые параллельны.

…Всё ли вам понятно? Если нет, то милости прошу по ссылкам, если да, то отработаем этот незатейливый алгоритм на конкретных практических примерах:

Задача 153

Выяснить взаимное расположение двух прямых

Решение: как и во многих задачах, решение удобно оформить по пунктам:

1) Вытаскиваем из уравнений прямых их точки и направляющие векторы:

2) Найдём вектор:

Таким образом, векторы компланарны, а значит, прямые лежат в одной плоскости и могут пересекаться, быть параллельными или совпадать.

4) Проверим направляющие векторы на коллинеарность.

Составим систему из соответствующих координат данных векторов:

Из каждого уравнения следует, что , следовательно, система совместна, соответствующие координаты векторов пропорциональны, и векторы коллинеарны.
Следовательно, прямые параллельны либо совпадают.

5) Выясним, есть ли у прямых общие точки. Возьмём точку , принадлежащую первой прямой, и подставим её координаты в уравнения прямой :

Получены неверные равенства, значит, точка «не подошла». Таким образом, общих точек у прямых нет, и им ничего не остаётся, как быть параллельными.

Ответ:

Интересный пример для самостоятельного решения:

Задача 154

Выяснить взаимное расположение прямых

Обратите внимание, что у второй прямой в качестве параметра выступает буква . Логично. В общем случае – это две различные прямые, и у каждой прямой свой параметр.

Решение и ответ в конце книги.

Далее мы по порядку рассмотрим задачи, «посвященные» скрещивающимся прямым, затем – пересекающимся, затем – параллельным и совпадающим:

Автор: Aлeксaндр Eмeлин

Пересечение прямых. Точка пересечения двух прямых

Точка пересечения прямых

Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.

Точка пересечения двух прямых на плоскости

  • графический
  • аналитический

Графический метод решения. Используя уравнения, начертить графики прямых и с помощью линейки найти координаты точки пересечения.

Аналитический метод решения. Необходимо объединить уравнения прямых в систему, решение которой, позволит определить точные координаты точки пересечения прямых.

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Точка пересечения прямых

Пример 1. Найти точку пересечения прямых y = 2 x — 1 и y = -3 x + 1 .

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 y = -3 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (-3 x + 1) y = -3 x + 1 => 0 = 5 x — 2 y = -3 x + 1

Из первого уравнения найдем значение x

5 x = 2 y = -3 x + 1 => x = 2 5 = 0.4 y = -3 x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4 y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Точка пересечения прямых

Пример 2. Найти точку пересечения прямых y = 2 x — 1 и x = 2 t + 1 y = t .

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 x = 2 t + 1 y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2 t + 1) — 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>

-3 t = 1 x = 2 t + 1 y = t => t = — 1 3 x = 2 t + 1 y = t

Подставим значение t во второе и третье уравнение

t = — 1 3 x = 2·(- 1 3 ) + 1 = — 2 3 + 1 = 1 3 y = — 1 3

Ответ. Точка пересечения двух прямых имеет координаты ( 1 3 , — 1 3 )

Точка пересечения прямых

Пример 3 Найти точку пересечения прямых 2 x + 3 y = 0 и x — 2 3 = y 4 .

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2 x + 3 y = 0 x — 2 3 = y 4

Из второго уравнения выразим y через x

2 x + 3 y = 0 y = 4· x — 2 3

Подставим y в первое уравнение

2 x + 3·4· x — 2 3 = 0 y = 4· x — 2 3 => 2 x + 4·( x — 2) = 0 y = 4· x — 2 3 =>

2 x + 4 x — 8 = 0 y = 4· x — 2 3 => 6 x = 8 y = 4· x — 2 3 =>

x = 8 6 = 4 3 y = 4· x — 2 3 => x = 8 6 = 4 3 y = 4· 4/3 — 2 3 = 4· -2/3 3 = — 8 9

Ответ. Точка пересечения двух прямых имеет координаты ( 4 3 , — 8 9 )

Точка пересечения прямых

Пример 4. Найти точку пересечения прямых y = 2 x — 1 и y = 2 x + 1 .

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2 x — 1 y = 2 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (2 x + 1) y = -3 x + 1 => 0 = -2 y = -3 x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Точка пересечения прямых

Пример 5. Проверить является ли точка N(1, 1) точкой пересечения прямых y = x и y = 3 x — 2 .

Решение: Подставим координаты точки N в уравнения прямых.

Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

Точка пересечения двух прямых в пространстве

Метод решения. Для определение координат точки пересечения прямых в пространстве, необходимо объединить уравнения прямых в систему, решение которой, позволит определить точные координаты точки пересечения прямых.

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

Пример 6. Найти точку пересечения прямых x — 1 = y — 1 = z — 1 и x — 3 -2 = 2 — y = z .

Решение: Составим систему уравнений

x — 1 = a y — 1 = a z — 1 = a x — 3 -2 = b 2 — y = b z = b => x = a + 1 y = a + 1 z = a + 1 x — 3 -2 = b 2 — y = b z = b =>

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = a + 1 y = a + 1 z = a + 1 a + 1 — 3 -2 = b 2 — ( a + 1) = b a + 1 = b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 = b

К шестому уравнению добавим пятое уравнение

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 + (1 — a ) = b + b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b b = 1

Подставим значение b в четвертое и пятое уравнения

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = 1 1 — a = 1 b = 1 => x = a + 1 y = a + 1 z = a + 1 a — 2 = -2 a = 0 b = 1 =>

x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1

Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

Замечание. Если уравнения прямых заданы параметрически, и в обоих уравнениях параметр задан одной и той же буквой, то при составлении системы в одном из уравнений необходимо заменить букву отвечающую за параметр.

Пример 7. Найти точку пересечения прямых x = 2 t — 3 y = t z = — t + 2 и x = t + 1 y = 3 t — 2 z = 3 .

Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

x = 2 t — 3 y = t z = — t + 2 x = a + 1 y = 3 a — 2 z = 3

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = 2 t — 3 y = t z = — t + 2 2 t — 3 = a + 1 t = 3 a — 2 — t + 2 = 3 => x = 2 t — 3 y = t z = — t + 2 2 t = a + 4 t = 3 a — 2 t = -1 =>

Подставим значение t из шестого уравнения в остальные уравнения

x = 2·(-1) — 3 y = (-1) z = -(-1) + 2 2·(-1) = a + 4 -1 = 3 a — 2 t = -1 => x = -5 y = -1 z = 3 a = -6 a = 1 3 t = -1

Ответ. Так как -6 ≠ 1 3 , то прямые не пересекаются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *