Определенный интеграл как предел интегральной суммы онлайн
Перейти к содержимому

Определенный интеграл как предел интегральной суммы онлайн

  • автор:

Калькулятор Интегралов

Калькулятор Интегралов

Вычисление интегралов онлайн
— по шагам и с графиками!

Посетите Калькулятор Производных!
Integral Calculator in English
Calculadora de Integrales en español
Integralrechner auf Deutsch

Калькулятор Интегралов позволяет вычислять интегралы и первообразные функций онлайн — совершенно бесплатно!

Наш Калькулятор позволяет проверить решение Ваших математических заданий. Он поможет вам с решением задачи показывая весь ход решения шаг за шагом. Поддерживаются все виды интегрирования включая специальные функции.

Калькулятор Интегралов поддерживает вычисление определённых и неопределённых (первообразных функций) интегралов включая интегрирование функций с несколькими переменными. Кроме этого Вы можете проверить результат своего решения! Интерактивные графики помогут представить и лучше понять функции интегралов.

Чтобы узнать больше о том как пользоваться Калькулятором Интегралов, загляните в раздел «Справка» или ознакомьтесь с примерами.

Ну что ж, теперь — вперед! Успешного интегрирования!

Введите функцию, которую вы хотите проинтегрировать в Калькулятор Интегралов. Не вводите «f(x) =» часть и дифференциал «dx«! Калькулятор Интегралов сразу показывает математическое выражение в графическом виде, прямо в процессе ввода. Убедитесь, что это выражение соответствует тому, что Вы хотели ввести. Используйте скобки если понадобится, например «a/(b+c)«.

В разделе «Примеры», приведены некоторые из функций которые Калькулятор Интегралов способен вычислять.

После того как Вы закончили вводить вашу функцию, нажмите «=» и Калькулятор Интегралов выдаст результат.

В разделе «Настройки» переменная интегрирования и пределы интегрирования могут быть установлены/изменены. Если пределы интегрирования не будут указаны, то будет вычислена только лишь первообразная функция.

Щелчок мышки на примере вводит его в Калькулятор Интегралов. Простое наведение мышки — показывает текст выражения.

Настройте параметры калькулятора:

Переменная интегрирования:
Верхний предел (до): +∞
Нижний предел (от): –∞
Использовать только численное интегрирование?
Упрощать выражения интенсивнее?
Упрощать все корни?
(√ x² станет x, а не |x|)
Использовать комплексные числа (ℂ)?
Использовать числа с запятой вместо дробей?

Генератор заданий для тренировки позволяет сгенерировать сколько угодно различных случайных заданий.

Ниже Вы найдете настройки конфигурации и один из предложенных вариантов задания. Вы можете взяться за его решение (тогда оно будет введено в Калькулятор) или сгенерировать новое.

Вычисляем интеграл: Введите Ваш результат:

Следующее выражение будет вычислено:

Загрузка … пожалуйста подождите!
Это займет несколько секунд.

Это не то, что Вы имели ввиду? Используйте скобки! В случае необходимости, выберите переменную и пределы интегрирования в разделе «Настройки«.

Поддержка

Вам помог мой калькулятор? Расскажите своим друзьям об этом Калькуляторе и Вы тоже сможете мне помочь!

Результаты вычислений

Наверху страницы введите функцию, которую Вы хотите проинтегрировать. Переменная интегрирования, пределы интегрирования и другие параметры могут быть изменены в разделе «Настройки«. Нажмите «=» чтобы запустить интегрирование/нахождение первообразной функции. Результат будет показан ниже на этой странице.

Как работает Калькулятор Интегралов

Для тех кому интересны технические подробности, в этой части рассказывается как устроен и работает Калькулятор Интегралов.

Сначала синтаксический анализатор (па́рсер) анализирует исходное математическое выражение. Он преобразует его в форму более удобную для компьютера, а именно в форму дерева (см. картинку ниже). В процессе такого преобразования, Интегральный Калькулятор должен соблюдать порядок операций с учетом их приоритета. Так же, как и то, что в математических выражениях знак умножения часто опускается, например, мы обычно пишем «5x» вместо «5*x». Калькулятор Интегралов должен уметь понимать такие случаи и сам добавлять знак умножения.

Па́рсер написан на JavaScript, и основывается на алгоритме сортировочной станции, поэтому может исполняться прямо в браузере. Это дает возможность генерировать удобочитаемое выражение на ходу, преобразуя получающееся дерево в код для LaTeX (Ла́тех). С помощью MathJax происходит генерация картинки и ее отображение в браузере.

По нажатию кнопки » Проверка решения» должен решить сложную задачу по определению являются ли два математических выражения равными друг другу. Разница между выражениями вычисляется и упрощается с помощью Ма́ксимы настолько, насколько это возможно. К примеру, это может быть переписывание тригонометрических/гиперболических функций в их экспоненциальные формы. Если удается упростить разницу до нуля — задача выполнена. В противном случае, применяется вероятностный алгоритм, который вычисляет и сравнивает оба выражения в случайно выбранных местах. В случае с первообразной, вся процедура повторяется для каждой производной, т.к. первообразная может отличаться константой.

Интерактивные графики функций вычисляются в браузере и отрисовываются на Сanvas («Холст») из HTML5. Для каждой математической функции, которая должна быть отрисована, Калькулятор создает функцию JavaScript, которая затем вычисляется с шагом, необходимым для правильного отображения графика. Все сингулярности (например полюса) функции обнаруживаются в процессе отрисовки и обрабатываются отдельно. Управление жестами для мобильных устройств сделано на основе hammer.js.

Если у Вас есть вопросы или пожелания, а так же идеи как улучшить Калькулятор Интегралов, пожалуйста пишите мне на e-mail.

© David Scherfgen 2024 — all rights reserved.

Перевод сайта: Timur Saitov

Калькулятор Интегралов. Решение Определенных и Неопределенных Интегралов (первообразных)

Калькулятор интегрирует функции, используя методы: замены, рациональных функций и дробей, неопределенных коэффициентов, разложения на множители, дробно-линейных иррациональностей, Остроградского, прямые методы, интегрирование по частям, подстановки Эйлера, дифференциального бинома, интегрирования с модулем, интегральных функций, степенных, тригонометрических, гиперболических преобразований, понижения степени подынтегральной функции и группировок. Для решения определенных интегралов применяется формула Ньютона-Лейбница и нахождение пределов в точках разрыва

Определенный интеграл онлайн

Определенным интегралом от заданной функции называется предел интегральных сумм, т.е.:

Определенный интеграл численно равен площади фигуры, ограниченной осью абсцисс, прямыми , и графиком функции .

Для того чтобы вычислить определенный интеграл, сначала нужно вычислить неопределенный интеграл , а затем воспользоваться формулой Ньютона-Лейбница:

Эта формула применима при условии, что подинтегральная функция является непрерывной на отрезке интегрирования. Поэтому, прежде чем приступить к вычислению определенного интеграла, необходимо найти область определения подинтегральной функции. Если выяснится, что подинтегральная функция имеет точки разрыва на отрезке интегрирования, необходимо разбить отрезок на несколько частей в каждой из которых подинтегральная функция непрерывна. Далее, следует вычислить соответствующие неопределенные интегралы на каждом из отрезков, и воспользоваться формулой Ньютона-Лейбница, взяв пределы в точках, где функция терпит разрыв.

Решение определённых интегралов

Преподаватель очень удивится увидев твоё верное решение��

Введите функцию, для которой надо найти интеграл

Калькулятор предоставляет ПОДРОБНОЕ решение определённых интегралов.

Этот калькулятор находит решение определенного интеграла от функции f(x) с данными верхними и нижними пределами.

Примеры определённых интегралов

Эти примеры ниже содержат различные методы интегрирования

Приведение к табличному виду

2^x + 3/2*cbrt(5x + 4)

Внесение под знак дифференциала/ Подведение под знак дифференциала

cos(2x)
ctgx

Интегрирование по частям

x*cos(x)
arctg(2x)

Метод непосредственного интегрирования

2^(3*x - 1)

Интегрирование заменой переменной

1/(3 - 5x)

Интегрирование методом подстановки

1/(x*sqrt(2*x - 9))

Что такое определённый интеграл?

Подробнее про определённый интеграл вы можете посмотреть по ссылке

Примеры

С применением степени
(квадрат и куб) и дроби

(x^2 - 1)/(x^3 + 1)
sqrt(x)/(x + 1)
cbrt(x)/(3*x + 2)

С применением синуса и косинуса

2*sin(x)*cos(x)
x*arcsin(x)
x*arccos(x)
x*log(x, 10)
ln(x)/x
exp(x)*x
tg(x)*sin(x)
ctg(x)*cos(x)
(sqrt(x) - 1)/sqrt(x^2 - x - 1)
x*arctg(x)
x*arcctg(x)

Гиберболические синус и косинус

2*sh(x)*ch(x)

Гиберболические тангенс и котангенс

ctgh(x)/tgh(x)

Гиберболические арксинус и арккосинус

x^2*arcsinh(x)*arccosh(x)

Гиберболические арктангенс и арккотангенс

x^2*arctgh(x)*arcctgh(x)
Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке): absolute(x) Абсолютное значение x
(модуль x или |x|) arccos(x) Функция — арккосинус от x arccosh(x) Арккосинус гиперболический от x arcsin(x) Арксинус от x arcsinh(x) Арксинус гиперболический от x arctg(x) Функция — арктангенс от x arctgh(x) Арктангенс гиперболический от x exp(x) Функция — экспонента от x (что и e^x) log(x) or ln(x) Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10)) sin(x) Функция — Синус от x cos(x) Функция — Косинус от x sinh(x) Функция — Синус гиперболический от x cosh(x) Функция — Косинус гиперболический от x sqrt(x) Функция — квадратный корень из x sqr(x) или x^2 Функция — Квадрат x ctg(x) Функция — Котангенс от x arcctg(x) Функция — Арккотангенс от x arcctgh(x) Функция — Гиперболический арккотангенс от x tg(x) Функция — Тангенс от x tgh(x) Функция — Тангенс гиперболический от x cbrt(x) Функция — кубический корень из x gamma(x) Гамма-функция LambertW(x) Функция Ламберта x! или factorial(x) Факториал от x DiracDelta(x) Дельта-функция Дирака Heaviside(x) Функция Хевисайда Интегральные функции: Si(x) Интегральный синус от x Ci(x) Интегральный косинус от x Shi(x) Интегральный гиперболический синус от x Chi(x) Интегральный гиперболический косинус от x

В выражениях можно применять следующие операции: Действительные числа вводить в виде 7.5, не 7,5 2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание 15/7 — дробь
Другие функции: asec(x) Функция — арксеканс от x acsc(x) Функция — арккосеканс от x sec(x) Функция — секанс от x csc(x) Функция — косеканс от x floor(x) Функция — округление x в меньшую сторону (пример floor(4.5)==4.0) ceiling(x) Функция — округление x в большую сторону (пример ceiling(4.5)==5.0) sign(x) Функция — Знак x erf(x) Функция ошибок (или интеграл вероятности) laplace(x) Функция Лапласа asech(x) Функция — гиперболический арксеканс от x csch(x) Функция — гиперболический косеканс от x sech(x) Функция — гиперболический секанс от x acsch(x) Функция — гиперболический арккосеканс от x
Постоянные: pi Число «Пи», которое примерно равно ~3.14159.. e Число e — основание натурального логарифма, примерно равно ~2,7183.. i Комплексная единица oo Символ бесконечности — знак для бесконечности

© Контрольная работа РУ — калькуляторы онлайн

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *