Что является результатом отношения бесконечно малых величин
Перейти к содержимому

Что является результатом отношения бесконечно малых величин

  • автор:

Бесконечно малая величина

Бесконечно малая величина — числовая функция или последовательность, которая стремится к нулю.

Бесконечно большая величина — числовая функция или последовательность, которая стремится к бесконечности определённого знака.

Исчисление бесконечно малых и больших

Исчисление бесконечно малых — вычисления, производимые с бесконечно малыми величинами, при которых производный результат рассматривается как бесконечная сумма бесконечно малых. Исчисление бесконечно малых величин является общим понятием для дифференциальных и интегральных исчислений, составляющих основу современной высшей математики. Понятие бесконечно малой величины тесно связано с понятием предела.

Бесконечно малая

Последовательность an называется бесконечно малой, если \lim_<n\to\infty>a_n=0″ width=»» height=»» />. Например, последовательность чисел <img decoding=

Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция xsinx , неограниченная с обеих сторон, не является бесконечно большой при .

\lim_<n\to\infty></p>
<p>Последовательность <i>a</i><sub><i>n</i></sub> называется <i>бесконечно большой</i>, если a_n=\infty» width=»» height=»» />.</p>
<p><img decoding=

  • Сумма конечного числа бесконечно малых — бесконечно малая.
  • Произведение бесконечно малых — бесконечно малая.
  • Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.
  • Если an — бесконечно малая последовательность, сохраняющая знак, то » width=»» height=»» /> — бесконечно большая последовательность.

Сравнение бесконечно малых величин

\frac</p>
<p>Как сравнивать бесконечно малые величины? <br />Отношение бесконечно малых величин образует так называемую неопределённость » width=»» height=»» />.</p>
<h4>Определения</h4>
<p><img decoding=

Допустим, у нас есть бесконечно малые при одном и том же величины α(x) и β(x) (либо, что не суть важно для определения, бесконечно малые последовательности).

  • Если \lim_<x\to a>\frac=0″ width=»» height=»» />, то β — бесконечно малая <i>высшего порядка малости</i>, чем α . Обозначают β = <i>o</i>(α) .</li>
<li>Если <img decoding= величина x 5 имеет высший порядок малости относительно x 3 , так как \lim_\frac= 0. С другой стороны, x 3 имеет низший порядок малости относительно x 5 , так как \lim_\frac= \infty.

С использованием О-символики полученные результаты могут быть записаны в следующем виде x 5 = o(x 3 ).

  • \lim_\frac=\lim_\frac=\lim_(2x+6)=6, то есть при x\to 0функции f(x) = 2x 2 + 6x и g(x) = x являются бесконечно малыми величинами одного порядка.

В данном случае справедливы записи 2x 2 + 6x = O(x) и x = O(2x 2 + 6x).

  • При бесконечно малая величина 2x 3 имеет третий порядок малости относительно x , поскольку \lim_\frac= 2, бесконечно малая 0,7x 2 — второй порядок, бесконечно малая \sqrt — порядок 0,5 .

Эквивалентные величины

Определение

Если \lim_<x\to a>\frac=1″ width=»» height=»» />, то бесконечно малые величины α и β называются <i>эквивалентными</i> (<img decoding=).
Очевидно, что эквивалентные величины являются частным случаем бесконечно малых величин одного порядка малости.

<x\to 0></p>
<p>При » width=»» height=»» /> справедливы следующие соотношения эквивалентности (как следствия из т.н. замечательных пределов):</p>
<ul>
<li><img decoding=;

  • \mathrm<tg>x\thicksim x» width=»» height=»» />;</li>
</ul>
<ul>
<li><img decoding=;
  •  e^x-1\thicksim x.

Теорема

Предел частного (отношения) двух бесконечно малых величин не изменится, если одну из них (или обе) заменить эквивалентной величиной.

Данная теорема имеет прикладное значение при нахождении пределов (см. пример).

Пример использования

  • Найти \lim_\frac.

Заменяя sin2x эквивалентной величиной 2x , получаем \lim_\frac= \lim_\frac= 2.

Исторический очерк

Понятие «бесконечно малое» обсуждалось ещё в античные времена в связи с концепцией неделимых атомов, однако в классическую математику не вошло. Вновь оно возродилось с появлением в XVI веке «метода неделимых» — разбиения исследуемой фигуры на бесконечно малые сечения.

В XVII веке произошла алгебраизация исчисления бесконечно малых. Они стали определяться как числовые величины, которые меньше всякой конечной (ненулевой) величины и всё же не равны нулю. Искусство анализа заключалось в составлении соотношения, содержащего бесконечно малые (дифференциалы), и затем — в его интегрировании.

Математики старой школы подвергли концепцию бесконечно малых резкой критике. Мишель Ролль писал, что новое исчисление есть «набор гениальных ошибок»; Вольтер ядовито заметил, что это исчисление представляет собой искусство вычислять и точно измерять вещи, существование которых не может быть доказано. Даже Гюйгенс признавался, что не понимает смысла дифференциалов высших порядков.

Споры в Парижской Академии наук по вопросам обоснования анализа приобрели настолько скандальный характер, что Академия однажды вообще запретила своим членам высказываться на эту тему (в основном это касалось Ролля и Вариньона). В 1706 году Ролль публично снял свои возражения, однако дискуссии продолжались.

В 1734 году известный английский философ, епископ Джордж Беркли выпустил нашумевший памфлет, известный под сокращенным названием «Аналист». Полное его название: «Аналист или рассуждение, обращенное к неверующему математику, где исследуется, более ли ясно воспринимаются или более ли очевидно выводятся предмет, принципы и умозаключения современного анализа, чем религиозные таинства и догматы веры».

«Аналист» содержал остроумную и во многом справедливую критику исчисления бесконечно малых. Метод анализа Беркли считал несогласным с логикой и писал, что, «как бы он ни был полезен, его можно рассматривать только как некую догадку; ловкую сноровку, искусство или скорее ухищрение, но не как метод научного доказательства». Цитируя фразу Ньютона о приращении текущих величин «в самом начале их зарождения или исчезновения», Беркли иронизирует: «это ни конечные величины, ни бесконечно малые, ни даже ничто. Не могли ли бы мы их назвать призраками почивших величин?… И как вообще можно говорить об отношении между вещами, не имеющими величины. Тот, кто может переварить вторую или третью флюксию [производную], вторую или третью разность, не должен, как мне кажется, придираться к чему-либо в богословии».

Невозможно, пишет Беркли, представить себе мгновенную скорость, то есть скорость в данное мгновение и в данной точке, ибо понятие движения включает понятия о (конечных ненулевых) пространстве и времени.

Как же с помощью анализа получаются правильные результаты? Беркли пришел к мысли, что это объясняется наличием в аналитических выводах взаимокомпенсации нескольких ошибок, и проиллюстрировал это на примере параболы. Занятно, что некоторые крупные математики (например, Лагранж) согласились с ним.

Сложилась парадоксальная ситуация, когда строгость и плодотворность в математике мешали одна другой. Несмотря на использование незаконных действий с плохо определёнными понятиями, число прямых ошибок было на удивление малым — выручала интуиция. И всё же весь XVIII век математический анализ бурно развивался, не имея по существу никакого обоснования. Эффективность его была поразительна и говорила сама за себя, но смысл дифференциала по-прежнему был неясен. Особенно часто путали бесконечно малое приращение функции и его линейную часть.

В течение всего XVIII века предпринимались грандиозные усилия для исправления положения, причём в них участвовали лучшие математики столетия, однако убедительно построить фундамент анализа удалось только Коши в начале XIX века. Он строго определил базовые понятия — предел, сходимость, непрерывность, дифференциал и др., после чего актуальные бесконечно малые исчезли из науки. Некоторые оставшиеся тонкости разъяснил позднее Вейерштрасс.

Как иронию судьбы можно рассматривать появление в середине XX века нестандартного анализа, который доказал, что первоначальная точка зрения — актуальные бесконечно малые — также непротиворечива и могла бы быть положена в основу анализа.

См. также

  • «O» большое и «o» малое
  • Дифференциал
  • Метод неделимых
  • Предел последовательности
  • Предел функции

Wikimedia Foundation . 2010 .

Конев В.В. Пределы последовательностей и функций

Сравнение бесконечно малых

Предел последовательности

Предел функции

Приближенные вычисления

Непрерывность функций

Если этот предел представляет собой конечное ненулевое число, то и называются бесконечно малыми одного и того же порядка.
Особый интерес представляет частный случай, когда λ = 1. Тогда говорят, что и являются эквивалентными бесконечно малыми при и записывают это утверждение в виде

Если λ = 0, то говорят, что является бесконечно малой более высокого порядка по сравнению с при а функция имеет меньший порядок малости.

Термин “порядок малости” допускает уточнение, если и представляют собой бесконечно малые одного и того же порядка. В этом случае говорят, что является бесконечно малой n-го порядка по сравнению с . Например, функция является бесконечно малой 4-го порядка по сравнению с при x → 0.

Если λ = ∞, то бесконечно малые и как бы меняются своими ролями. В этом случае функция является бесконечно малой более высокого порядка по сравнению с при .

Сформулируем некоторые полезные свойства эквивалентных бесконечно малых.

    Если и – эквивалентные бесконечно малых при то их разность есть бесконечно малая более высокого порядка.
    Действительно,

Для записи такого утверждения используется выражение

Бесконечно малые и являются эквивалентными, если и являются бесконечно малыми одного и того же порядка.

Если – бесконечно малая более высокого порядка по сравнению с при то

Бесконечно малые и бесконечно большие функции

Определения и свойства бесконечно малых и бесконечно больших функций в точке. Связь между ними. Доказательства свойств и теорем. Арифметические свойства пределов с бесконечно малыми и бесконечно большими функциями.

Определение бесконечно малой и бесконечно большой функции

Бесконечно малая функция Функция α ( x ) называется бесконечно малой при x стремящемся к x 0 , если она имеет равный нулю предел при x → x 0 :
.
Здесь x 0 есть конечная или бесконечно удаленная точка: ∞ , –∞ или +∞ .
Бесконечно большая функция Функция f ( x ) называется бесконечно большой при x стремящемся к x 0 , если она имеет равный бесконечности предел при x → x 0 :
.
Здесь x 0 есть конечная или бесконечно удаленная точка: ∞ , –∞ или +∞ .

Свойства бесконечно малых функций

Свойство суммы, разности и произведения бесконечно малых функций

Сумма, разность и произведение конечного числа бесконечно малых функций при x → x 0 является бесконечно малой функцией при x → x 0 .

Теорема о произведении ограниченной функции на бесконечно малую

Произведение функции, ограниченной на некоторой проколотой окрестности точки x 0 , на бесконечно малую, при x → x 0 , является бесконечно малой функцией при x → x 0 .
Доказательство ⇓

Свойство о представлении функции в виде суммы постоянной и бесконечно малой функции

Для того, чтобы функция f ( x ) имела конечный предел , необходимо и достаточно, чтобы
,
где – бесконечно малая функция при x → x 0 .
Доказательство ⇓

Свойства бесконечно больших функций

Теорема о сумме ограниченной функции и бесконечно большой

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки x 0 , и бесконечно большой функции, при x → x 0 , является бесконечно большой функцией при x → x 0 .
Доказательство ⇓

Теорема о произведении ограниченной снизу функции на бесконечно большую

Если функция , на некоторой проколотой окрестности точки , по абсолютной величине ограничена снизу положительным числом:
,
а функция является бесконечно большой при x → x 0 :
,
то их произведение является бесконечно большой функцией при :
.
Доказательство ⇓

Теорема о частном от деления ограниченной функции на бесконечно большую

Если функция f ( x ) является бесконечно большой при x → x 0 , а функция g ( x ) – ограничена на некоторой проколотой окрестности точки x 0 , то
.
Доказательство ⇓

Теорема о частном от деления ограниченной снизу функции на бесконечно малую

Если функция , на некоторой проколотой окрестности точки , по абсолютной величине ограничена снизу положительным числом:
,
а функция является бесконечно малой при x → x 0 :
,
и существует проколотая окрестность точки , на которой , то
.
Доказательство ⇓

Свойство неравенств бесконечно больших функций

Если функция является бесконечно большой при :
,
и функции и , на некоторой проколотой окрестности точки удовлетворяют неравенству:
,
то функция также бесконечно большая при :
.
Доказательство ⇓

Это свойство имеет два частных случая.

Пусть, на некоторой проколотой окрестности точки , функции и удовлетворяют неравенству:
.
Тогда если , то и .
Если , то и .

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция является бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то можно записать так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
, или .

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства».

Арифметические свойства бесконечно больших и бесконечно малых функций

Приведенные выше свойства выполняются, если функция ограничена, а функция ограничена снизу по абсолютной величине положительным числом. При этом эти функции не обязательно должны иметь конечный предел, а могут расходиться. Однако, эти функции будут обладать указанными свойствами, если они имеют соответствующие пределы. Это позволяет сформулировать арифметические свойства бесконечно больших и бесконечно малых функций.

Пусть существуют пределы функций
и .
И пусть, при , функция является бесконечно малой:
, а функция – бесконечно большой:
.
Тогда существует пределы суммы и разности:
(A.1) ;
существуют пределы произведений:
(A.2) ;
существуют пределы частного:
(A.3) .

Действительно, если функция имеет конечный предел при , то существует проколотая окрестность , на которой она ограничена (см. «Теорема об ограниченности функции, имеющей конечный предел»).
Если функция имеет не равный нулю предел , то существует проколотая окрестность , на которой она ограничена снизу по абсолютной величине числом :
при .
(см. «Теорема об ограниченности снизу функции, имеющей ненулевой предел»).
Тогда, на основе изложенных выше теорем, существуют пределы (А.1 – А.3).

Доказательство свойств и теорем

Теорема о произведении ограниченной функции на бесконечно малую

Все свойства ⇑ Произведение функции , ограниченной на некоторой проколотой окрестности точки x 0 :
при ,
на бесконечно малую , при x → x 0 :
,
является бесконечно малой функцией при x → x 0 :
.

Для доказательства этой теоремы, мы воспользуемся определением предела функции по Гейне. А также используем свойство бесконечно малых последовательностей, согласно которому произведение ограниченной последовательности на бесконечно малую является бесконечно малой последовательностью.

Пусть функция является бесконечно малой при :
.
И пусть функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку существует предел , то существует проколотая окрестность точки , на которой определена функция . Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно малой:
.

Воспользуемся тем, что произведение ограниченной последовательности на бесконечно малую есть бесконечно малая последовательность:
.
Тогда, согласно определению предела последовательности по Гейне,
.

Свойство о представлении функции в виде суммы постоянной и бесконечно малой функции

Все свойства ⇑ Для того, чтобы функция f ( x ) имела конечный предел , необходимо и достаточно, чтобы
,
где – бесконечно малая функция при x → x 0 .

Необходимость. Пусть функция имеет в точке конечный предел
.
Рассмотрим функцию:
.
Используя свойство предела разности функций, имеем:
.
То есть есть бесконечно малая функция при .

Теорема о сумме ограниченной функции и бесконечно большой

Все свойства ⇑ Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки x 0 , и бесконечно большой функции, при x → x 0 , является бесконечно большой функцией при x → x 0 .

Для доказательства теоремы, мы воспользуемся определением предела функции по Гейне. Также используем свойство бесконечно больших последовательностей, согласно которому сумма или разность ограниченной последовательности и бесконечно большой является бесконечно большой последовательностью.

Пусть функция является бесконечно большой при :
.
И пусть функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку существует предел , то существует проколотая окрестность точки , на которой функция определена. Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно большой:
.

Поскольку сумма или разность ограниченной последовательности и бесконечно большой является бесконечно большой последовательностью, то
.
Тогда, согласно определению предела последовательности по Гейне,
.

Теорема о произведении ограниченной снизу функции на бесконечно большую

Все свойства ⇑ Если функция , на некоторой проколотой окрестности точки , по абсолютной величине ограничена снизу положительным числом:
,
а функция является бесконечно большой при x → x 0 :
,
то их произведение является бесконечно большой функцией при :
.

Для доказательства этого свойства, мы воспользуемся определением предела функции по Гейне. Также используем свойство бесконечно больших последовательностей, согласно которому произведение бесконечно большой и ограниченной снизу последовательности является бесконечно большой последовательностью.

Пусть функция является бесконечно большой при :
.
И пусть функция ограничена по абсолютной величине снизу положительным числом, на некоторой проколотой окрестности точки :
при .

Поскольку существует предел функции при , то существует проколотая окрестность точки , на которой функция определена.
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и . Причем .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной снизу:
,
а последовательность является бесконечно большой:
.

Поскольку произведение бесконечно большой и ограниченной снизу последовательности является бесконечно большой последовательностью, то
.
Согласно определению предела последовательности по Гейне,
.

Теорема о частном от деления ограниченной функции на бесконечно большую

Все свойства ⇑ Если функция f ( x ) является бесконечно большой при x → x 0 , а функция g ( x ) – ограничена на некоторой проколотой окрестности точки x 0 , то
.

Для доказательства, мы воспользуемся определением предела функции по Гейне. Также используем свойство бесконечно больших последовательностей, согласно которому частное от деления ограниченной последовательности на бесконечно большую является бесконечно малой последовательностью.

Пусть функция является бесконечно большой при , а функция ограничена в некоторой проколотой окрестности точки :
при .

Поскольку функция бесконечно большая, то существует проколотая окрестность точки , на которой она определена и не обращается в нуль:
при .
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной:
,
a последовательность является бесконечно большой с отличными от нуля членами:
, .

Поскольку частное от деления ограниченной последовательности на бесконечно большую является бесконечно малой последовательностью, то
.
Тогда, согласно определению предела последовательности по Гейне,
.

Теорема о частном от деления ограниченной снизу функции на бесконечно малую

Все свойства ⇑ Если функция , на некоторой проколотой окрестности точки , по абсолютной величине ограничена снизу положительным числом:
,
а функция является бесконечно малой при x → x 0 :
,
и существует проколотая окрестность точки , на которой , то
.

Для доказательства этого свойства, мы воспользуемся определением предела функции по Гейне. Также используем свойство бесконечно больших последовательностей, согласно которому частное от деления ограниченной снизу последовательности на бесконечно малую является бесконечно большой последовательностью.

Пусть функция является бесконечно малой при , а функция ограничена по абсолютной величине снизу положительным числом, на некоторой проколотой окрестности точки :
при .

По условию существует проколотая окрестность точки , на которой функция определена и не обращается в нуль:
при .
Пусть есть пересечение окрестностей и . Тогда на ней определены функции и . Причем и .

Пусть есть произвольная последовательность, сходящаяся к , элементы которой принадлежат окрестности :
.
Тогда определены последовательности и . Причем последовательность является ограниченной снизу:
,
а последовательность является бесконечно малой с отличными от нуля членами:
, .

Поскольку частное от деления ограниченной снизу последовательности на бесконечно малую является бесконечно большой последовательностью, то
.
Согласно определению предела последовательности по Гейне,
.

Свойство неравенств бесконечно больших функций

Все свойства ⇑ Если функция является бесконечно большой при :
,
и функции и , на некоторой проколотой окрестности точки удовлетворяют неравенству:
,
то функция также бесконечно большая при :
.

Пусть функция является бесконечно большой при :
.
И пусть имеется проколотая окрестность точки , на которой
при .

Возьмем произвольную последовательность , сходящуюся к . Тогда, начиная с некоторого номера N , элементы последовательности будут принадлежать этой окрестности:
при .
Тогда
при .

Согласно определению предела функции по Гейне,
.
Тогда по свойству неравенств бесконечно больших последовательностей,
.
Поскольку последовательность произвольная, сходящаяся к , то по определению предела функции по Гейне,
.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.

Автор: Олег Одинцов . Опубликовано: 14-06-2018 Изменено: 02-02-2020

Лекция 10. Раздел 10.2
Сравнение бесконечно малых величин.

Как следует из определения бесконечно малых величин, все они стремятся к нулю, но скорость этого стремления может быть различна. Поэтому все бесконечно малые величины можно сравнивать между собой.

Пусть даны две бесконечно малые величины и при , то есть , .

Определение 10.2.1. Функции и называются бесконечно малыми величинами одного порядка малости, если .

Определение 10.2.2. Функция называется бесконечно малой величиной более высокого порядка малости, чем , если .

Определение 10.2.3. Функция называется бесконечно малой величиной более низкого порядка малости, чем , если .

Тот факт, что , например, имеет более высокий порядок малости, чем , можно обозначить следующим образом: .

Определение 10.2.4. Функция называется бесконечно малой величиной го порядка малости относительно , если .

Определение 10.2.5. Функции и называются несравнимыми бесконечно малыми величинами, если не существует и не равен .

Определение 10.2.6. Две бесконечно малые величины и называются эквивалентными, если .

Очевидно, что это частный случай бесконечно малых величин одного порядка малости. Эквивалентные величины обозначаются следующим образом: .

Понятие эквивалентности имеет практическое приложение. Если , то это значит, что при достаточном приближении к на основании теоремы 9.2.1 можно написать: . Иначе говоря, или .

Полученный результат позволяет следствия первого и второго замечательных пределов представить следующим образом:

Данный факт значительно облегчает вычисление пределов, связанных с первым и вторым замечательными пределами. Докажем объясняющую это теорему.

Теорема 10.2.1. Предел отношения двух бесконечно малых величин равен пределу отношения эквивалентных им величин.

Доказательство. Пусть даны две бесконечно малые величины и при , причем и . Рассмотрим

что и требовалось доказать.

Следовательно, при вычислении пределов, используя замены сомножителей на эквивалентные им более простые величины, можно значительно упрощать выражения.

Рассмотрим теперь теорему, дающую достаточно простой признак эквивалентности бесконечно малых величин.

Теорема 10.2.2. Две бесконечно малые величины и при эквивалентны тогда и только тогда, когда их разность есть бесконечно малая величина более высокого порядка малости, чем и .

Необходимость. Дано, что . Рассмотрим

то есть . Аналогично доказывается, что .

Достаточность. Дано, что и . Рассмотрим

то есть , что и требовалось доказать.

Рассмотрим еще одну теорему, облегчающую процесс вычисления пределов.

Теорема 10.2.3. Сумма конечного числа бесконечно малых величин разных порядков малости эквивалентна слагаемому с самым низким порядком малости.

Доказательство. Пусть даны бесконечно малые величины , и при , причем , , . Обозначим . Тогда

то есть , что и требовалось доказать.

  • Решение задач :
  • Главная
  • Цены
  • Оплата
  • Вопросы — ответы
  • Образцы готовых работ
  • Заказать решение
  • Скачать программы
  • Скачать книги
  • Скачать реферат
  • Разное :
  • Обмен ссылками
  • Ссылки
  • Интересно:
  • Шпаргалки по математике
  • Новости математикм
  • Статьи по математике
  • Лекции по математике
  • Разделы:
  • Раздел 10.1
  • Раздел 10.2

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *