Что сначала идет умножение или сложение
Перейти к содержимому

Что сначала идет умножение или сложение

  • автор:

Урок 9. Порядок арифметических действий в числовом выражении. Действия первой и второй ступеней, скобки

Prostobank.ua рассказывает, какие действия относятся к действиям первой и второй ступеней, каков порядок действий в числовом выражении без скобок и в выражении с квадратными, фигурными скобками. Что сначала деление или вычитание, какое первое действие умножения или деления, что первое сложение или вычитание? — ответ ищите в нашем уроке о порядке выполенния математических действий.

СЛОЖЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

  • Подбор кредитов:

СЛОЖЕНИЕ НАТУРАЛЬНЫХ ЧИСЕЛ

Действия первой и второй ступени с натуральными числами. Порядок действий

Мы уже рассмотрели арифметические действия сложения и вычитания. Эти действия называются действиями первой ступени. Умножение и деление принято считать действиями второй ступени. Если в математическом выражении есть несколько действий, включая действия и первой, и второй ступени, есть разные числа, соответственно результат зависит от порядка совершенных действий. Поэтому при решении примеров следует соблюдать правильный порядок действий.

Если в выражении нет скобок и присутствуют только действия второй ступени, то действия выполняются в том порядке, в котором они написаны, слева направо.

Урок 9. Порядок арифметических действий в числовом выражении. Действия первой и второй ступеней, скобки image:1

Например, 80 : 4 ⋅ 2 : 10 = 20 ⋅ 2 : 10 = 40 : 10 = 4

Если в выражении нет скобок и присутствуют только действия первой ступени, то действия выполняются в том порядке, в котором они написаны, слева направо.

Урок 9. Порядок арифметических действий в числовом выражении. Действия первой и второй ступеней, скобки image:2

Например, 56 + 10 – 25 + 30 = 66 – 25 + 30 = 41 + 30 = 71

Если в выражении нет скобок и случаются действия разных степеней, то сначала выполняют действия второй ступени, а затем действия первой ступени. Напомним, умножение и деление считаются действиями второй ступени, сложение и вычитание – действиями первой ступени.

Урок 9. Порядок арифметических действий в числовом выражении. Действия первой и второй ступеней, скобки image:3

Например, 43 + 25 ⋅ 4 – 10. Сначала выполним умножение 25 ⋅ 4 = 100, 43 + 100 – 10 = 133.

Если в выражении есть скобки, сначала выполняем действия в скобках, а затем все остальные согласно порядку действий. Если в скобках записано выражение из нескольких действий первой и второй ступеней, то в скобках также сначала выполняем действия второй ступени.

Урок 9. Порядок арифметических действий в числовом выражении. Действия первой и второй ступеней, скобки image:4

  1. действия в скобках
  2. умножение и деление,
  3. сложение и вычитание.

Сначала сложение или вычитание?

Сложение и вычитание являются действиями первой ступени, если нет скобок, то они выполняются поочередно слева направо.

Какое первое действие – умножение или деление?

И умножение, и деление – это действия второй степени, они «равноправны». Поэтому, если нет скобок, действия выполняются поочередно слева направо.

Сначала умножение или сложение?

Поскольку умножение является действием высшей степени, а сложение – действием низшей степени, если нет скобок, то сначала выполняем умножение.

Что сначала – деление или вычитание?

Поскольку деление является действием высшей степени, а вычитание – действием низшей степени, если нет скобок, сначала выполняем деление.

Алгоритм вычисления числового выражения

Перед вычислением числового выражения следует определить порядок действий и только после этого приступать к расчетам.

Рассмотрим выражение с несколькими действиями и скобками.

(53 – 42 : 7) ⋅ (22 ⋅ 2 +36 — 12) + 30

Первоочередность действий в данном выражении будет такой:

  • 42 разделить на 7 (42 : 7 = 6)
  • Из 53 вычесть результат первого действия: 53 – 6 = 47
  • Во вторых скобках сначала нужно выполнить умножение 22 на 2: 22 ⋅ 2 = 44
  • К результату умножения прибавляем 36: 44 + 36 = 80
  • Из полученной суммы вычитаем 12: 80 – 12 = 68
  • Умножим множители, которые являются результатами выполнения действий в первых и вторых скобках: 47 ⋅ 68 = 3196
  • К произведению прибавляем 30: 3196 + 30 = 3226

Ответ: (53 – 42 : 7) ⋅ (22 ⋅ 2 +36 -12) + 30 = 3226

Порядок действий с круглыми, квадратными и фигурными скобками

В математических выражениях встречаются не только круглые () скобки, но и квадратные — [ ] и фигурные < >. Фигурные и квадратные скобки используют тогда, когда у скобки необходимо взять выражение в скобках. Порядок действий со скобками следующий: сначала выполняем действия внутри круглых скобок согласно правилам последовательности, второй этап – действия в квадратных скобках, третий этап – действия в фигурных скобках согласно правилам последовательности.

Рассмотрим выражение с круглыми и квадратными скобками

100 — 4 ⋅ [14 + 45 : (10 + 5)] + 6 ⋅ (30 + 4 ⋅ 5 + 10).

  1. Выполним действия в круглых скобках:

30 + 4 ⋅ 5 + 10 = 30 + 20 + 10 = 60

  1. Выполним действия в квадратных скобках: 14 + 45 : 15 = 17
  2. Выполним остальные действия: 100 – 4 ⋅ 17 + 6 ⋅ 60 = 100 – 68 + 360 = 32 + 360 = 392

Порядок действий

Для правильного вычисления значений числовых выражений, в которых нужно произвести более одного действия, необходимо знать установленный порядок выполнения арифметических действий.

Порядок действий без скобок

Установленный порядок арифметических действий без скобок:

  1. Если выражение содержит только действия на сложение и вычитание, то они выполняются в порядке следования — слева направо: порядок выполнения действий в математике
  2. Если выражение содержит только действия на умножение и деление, то действия выполняются в порядке следования — слева направо: порядок действий в математике
  3. Если в выражении присутствуют и умножение с делением, и сложение с вычитанием, то сначала выполняются умножение и деление в порядке их следования (слева направо), а затем сложение и вычитание в порядке их следования (слева направо): порядок действий без скобок

Порядок действий со скобками

Если выражение содержит скобки, то сначала выполняются все действия внутри скобок, а затем все действия, находящиеся за скобками.

В числовых выражениях со скобками порядок выполнения арифметических действий такой же, как и в выражениях без скобок.

порядок действий со скобками

Скобки применяются для обозначения действий, которые нужно произвести раньше остальных. Скобки не влияют на порядок остальных действий в выражении, остальные действия выполняются в указанном порядке.

Дробная черта

Дробная черта в выражении может быть заменена на знак деления, в этом случае, всё что было над и под дробной чертой надо взять в скобки. Например:

13 + 2 = (13 + 2) : (10 — 7).
10 — 7

Знак деления в выражении можно заменить дробной чертой только в том случае, если это не нарушает порядок действий. Например, выражение:

нельзя заменить на

потому что такая замена нарушит порядок действий в данном выражении.

20 : 4(2 + 3) 20 ;
4(2 + 3)
20 = 20 : (4(2 + 3)).
4(2 + 3)

Дробная черта в выражении заменяет скобки и означает, что надо вычислить отдельно выражение, стоящее в числителе, и отдельно выражение, стоящее в знаменателе, и первый результат разделить на второй.

Молитвослов | contact@izamorfix.ru
2018 − 2024 © izamorfix.ru

1.4. Порядок действий

При вычислении арифметических выражений сначала выполняется умножение / деление, затем сложение / вычитание. Эпичный пример «сколько будет два плюс два умножить на два?»: .

Если число возводится в степень или находится под корнем, то в первую очередь нужно возвести в степень / извлечь корень: .

Если в показателе степени или под корнем выполняются другие действия, то обычно (но не всегда) сначала выполняем их:

и в этом примере как раз допустимо поменять порядок действий: .

Если есть скобки, то в первую очередь выполняется то, что в скобках:

Если перед скобкой стоит множитель, то их можно раскрыть, умножив каждое слагаемое на этот множитель:

Если перед скобками стоит знак «+» (множитель +1), то их можно просто убрать:

Если перед скобками стоит знак «–» (множитель -1), то их можно убрать, сменив у каждого слагаемого знак:
, и, к слову, здесь ошибочно складывать , помним, что – и сложение можно выполнять в любом порядке.

Теперь самое время потренироваться:

Задание 1

а) Найти модули следующих чисел: 4, –1, , пояснить, что это значит. Найти расстояние между следующими числами: 3 и –2, –7 и –13.

б) Выполнить возведение в степень: . Вычислить значение функции при (замучили с этим примером на сайте :)).

в) Извлечь корни (полностью или частично), если это возможно:

г) Избавиться от иррациональности в знаменателе:

д) Выполнить действия:

Решения и ответы для сверки в конце курса. Надеюсь, правильные 🙂

Порядок выполнения действий, правила, примеры

Когда мы работаем с различными математическими выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий: деление и умножение, сложение и вычитание степеней и др. Когда нужно сделать расчет и преобразование или вычитание значение, очень важно соблюдать правильную очередность или расстановку этих действий. Другими словами, действия в арифметике имеют свой особый порядок выполнения. Порядок действий в математике и для любого математика крайне важен.

В этой не слишком длинной и сложной статье мы расскажем, какие действия должны делаться математически в первую очередь, а какие после (к примеру, сначала идет деление или умножение). Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения или символы, а также знаки деления, умножения, вычитания и сложения (к примеру, пять плюс ноль равно пять). Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует решать эти примеры по действиям. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах по действиям, которые включают в себя знаки корней, степеней и других функций.

Порядок вычисления простых выражений

Решение примеров по действиям в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Пример или образец задачи 4

Условие: вычислите, сколько будет равно 5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 .

Решение

В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7 − 2 · 3 . Здесь нам надо умножить 2 на 3 и вычесть результат из 7 :

7 − 2 · 3 = 7 − 6 = 1

Считаем результат во вторых скобках. Там у нас всего одно действие: 6 − 4 = 2 .

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 5 + 1 · 2 : 2

Начнем с умножения и деления, потом выполним вычитание и получим:

5 + 1 · 2 : 2 = 5 + 2 : 2 = 5 + 1 = 6

На этом вычисления можно закончить.

Ответ: 5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 6 .

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такое задание.

Условие: вычислите, сколько будет 4 + ( 3 + 1 + 4 · ( 2 + 3 ) ) .

Решение

У нас есть скобки в скобках. Начинаем с 3 + 1 + 4 · ( 2 + 3 ) , а именно с 2 + 3 . Это будет 5 . Значение надо будет подставить в выражение и подсчитать, что 3 + 1 + 4 · 5 . Мы помним, что сначала надо умножать, а потом слагать: 3 + 1 + 4 · 5 = 3 + 1 + 20 = 24 . Подставив найденные значения в исходное выражение, вычислим ответ: 4 + 24 = 28 .

Ответ: 4 + ( 3 + 1 + 4 · ( 2 + 3 ) ) = 28 .

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Допустим, нам надо найти, сколько будет ( 4 + ( 4 + ( 4 − 6 : 2 ) ) − 1 ) − 1 . Начинаем с выражения во внутренних скобках. Поскольку 4 − 6 : 2 = 4 − 3 = 1 , исходное выражение можно записать как ( 4 + ( 4 + 1 ) − 1 ) − 1 . Снова обращаемся к внутренним скобкам: 4 + 1 = 5 . Мы пришли к выражению ( 4 + 5 − 1 ) − 1 . Считаем 4 + 5 − 1 = 8 и в итоге получаем разность 8 — 1 , результатом которой будет 7 .

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Условие: найдите, сколько будет ( 3 + 1 ) · 2 + 6 2 : 3 − 7 .

Решение

У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 6 2 = 36 . Теперь подставим результат в выражение, после чего оно примет вид ( 3 + 1 ) · 2 + 36 : 3 − 7 .

Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание (слагаемое и вычитаемое).

( 3 + 1 ) · 2 + 36 : 3 − 7 = 4 · 2 + 36 : 3 − 7 = 8 + 12 − 7 = 13

Ответ: ( 3 + 1 ) · 2 + 6 2 : 3 − 7 = 13 .

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *