Показать что функция удовлетворяет уравнению онлайн решение
Перейти к содержимому

Показать что функция удовлетворяет уравнению онлайн решение

  • автор:

Примеры нахождения частных производных

Задача 2. Найти частные производные , и , если переменные x, y, и z связаны равенством 4x 2 y e z – cos(x 3 – z) + 2y 2 + 3x = 0.
Решение находим с помощью калькулятора.
Для F(x, y, z) = 4x 2 y e z – cos(x 3 – z) + 2y 2 + 3x получаем:
Fx= (4x 2 ye z – cos(x 3 – z) + 2y 2 + 3x)’x = [считаем y и z постоянными] =
= 8x y e z + sin( x 3 – z)3x 2 + 3 = 8x y e z + 3x 2 sin( x 3 – z) + 3;
Fy= (4x 2 y e z – cos(x 3 – z) + 2y 2 + 3x)’y = [считаем x и z постоянными] =
= 4x 2 e z + 4y;
Fz = (4x 2 y e z – cos(x 3 – z) + 2y 2 + 3x)’z = [считаем x и y постоянными] =
= 4x 2 y e z – sin (x 3 – z).
По формулам находим частные производные:
;
и по формуле (3) получаем: .
Ответы: ;
.

Задание. Найти частные производные функции z в точке A(-1;0) .
z = ln(x 2 +y 2 )+y/x
Решение.
Находим частные производные:

Задание №2. Найти частные производные 1-го и 2-го порядка.
z = x 3 + 3x 2 y – sin(xy)
Скачать решение

Задача 1. Дана функция z = f(x,y). Требуется:
1) найти частные производные dz/dx и dz/dy;
2) найти полный дифференциал dz;
3) показать, что для данной функции справедливо равенство: d 2 z/dxdy = d 2 z/dydx.

Пример 1. Показать, что функция удовлетворяет уравнению .
Решение.
Найдем частные производные и .
,
.
Подставим их в уравнение

Получим тождество. Следовательно, функция z удовлетворяет данному уравнению.

Пример 2. Дана функция и две точки A(4;2 )и B(4.03;1.96). Требуется: 1) вычислить значение функции в точке В;
2) вычислить приближенное значение функции в точке В, исходя из значения z0 функции в точке А, заменив приращение функции при переходе от точки А к точке В дифференциалом;
3) оценить в процентах относительную погрешность, возникшую при замене приращения функции ее дифференциалом.
Решение.

Показать, что функция удовлетворяет уравнению.

Показать, что функция удовлетворяет уравнению.

Решение от преподавателя:

Пример 2:

Показать, что функция y= e — x (2cos5x -3sin 5x) удовлетворяет уравнению y» + 2y’ + 26y = 0.

Решение от преподавателя:

Не нашли нужного вам решения? Оставьте заявку и наши авторы быстро и качественно помогут вам с решением.

Частные производные

Частной производной по x функции z = f(x,y) в точке A(x0,y0) называется предел отношения частного приращения по x функции в точке A к приращению ∆x при стремлении ∆x к нулю.
Частные производные функции z(x,y) находятся по следующим формулам:
Вторые частные производные функции z(x,y) находятся по формулам:

Смешанные частные производные функции z(x,y) находятся по формулам:

  • Решение онлайн
  • Видеоинструкция
  • Также решают
Правила ввода функции, заданной в явном виде
  1. Примеры
    x 2 +xy ≡ x^2+x*y .
    cos 2 (2x+y) ≡ (cos(2*x+y))^2
    ≡ (x-y)^(2/3)
Правила ввода функции, заданной в неявном виде
  1. Все переменные выражаются через x,y,z
  2. Примеры
    ≡ x^2/(z+y)
    cos 2 (2x+zy) ≡ (cos(2*x+z*y))^2
    ≡ z+(x-y)^(2/3)

Частные производные используются, например, при нахождении полного дифференциала и экстремумов функции.

Частные производные функции нескольких переменных

Ели одному из аргументов функции z = f(x,y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: Δxz=f(x+Δx,y)-f(x,y) – это частное приращение функции z по аргументу x ; Δyz=f(x,y+Δy)-f(x,y) – это частное приращение функции z по аргументу у .
Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:
– это частная производная функции z по аргументу x ;
– это частная производная функции z по аргументу у .
Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента. Пример 1 . z=2x 5 +3x 2 y+y 2 –4x+5y-1

Пример 2 . Найти частные производные функции z = f(x;y) в точке A(x0;y0).

Находим частные производные:

Найдем частные производные в точке А(1;1)

Находим вторые частные производные:

Найдем смешанные частные производные:
Упростить логическое выражение

Решение по шагам
( a →c)→ b → a
Упростим функцию, используя основные законы логики высказываний.
Замена импликации: A → B = A v B

Учебно-методический

√ курсы переподготовки и повышения квалификации
√ вебинары
√ сертификаты на публикацию методического пособия

Библиотека материалов

√ Общеобразовательное учреждение
√ Дошкольное образование
√ Конкурсные работы
Все авторы, разместившие материал, могут получить свидетельство о публикации в СМИ

  • Задать вопрос или оставить комментарий
  • Помощь в решении
  • Поиск
  • Поддержать проект

Правила ввода данных

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Поиск

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus .
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Как проверить, удовлетворяет ли функция уравнению?

На дворе начало апреля 2015 и эти солнечные, но ещё холодные деньки навеяли ностальгические воспоминания о своих первых, во многом любительских заметках по высшей математике. Но время шло, тараканы взрослели, и мой стиль становился всё более и более академичным, а статьи – всё более объёмными и обстоятельными. Однако, не зря говорят, что всё возвращается на круги своя, и, видимо, поэтому сегодня появилось желание вернуться к той же лёгкости и непринуждённости изложения материала. По крайне мере, я попытаюсь =)

Задание, сформулированное в заголовке статьи, оказалось обойдено вниманием в теме «обычных» производных (производных функции ), и, прежде чем перейти к примерам с функциями нескольких переменных, наверстаем упущенное:

Проверить, удовлетворяет ли функция уравнению

! Примечание: в условии таких задач производную нередко обозначают через , и это не должно сбивать с толку!

Решение: поскольку в предложенное уравнение входит не только функция, но и её производная, то сначала следует найти производную:

Далее решение можно оформить двумя эквивалентными способами:

Стиль №1. Подставим и в левую часть уравнения и проведём упрощения:

– в результате получена правая часть, таким образом, данная функция удовлетворяет данному уравнению.

Что это, кстати, значит? Грубо говоря, функция является корнем уравнения .

Стиль №2. Подставим и в уравнение и выполним упрощения (в данном случае только левой части):

Получено верное равенство.

Ответ: данная функция удовлетворяет данному уравнению.

Аналогичную проверку, разумеется, можно выполнить и для других функций. Так, например, подставим и её производную в левую часть уравнения (Стиль №1):
– получена правая часть, значит, функция тоже удовлетворяет данному уравнению.

А вот, скажем, функция «не подходит». И действительно, подставляя в уравнение (Стиль №2):

– получаем неверное равенство.

Совершенно понятно, что таких «неудовлетворительных» функций – великое множество.

Многие читатели уже давно интуитивно чувствуют нечто знакомое, и это неспроста! Всем с раннего детства знакома ситуация, когда, широко разинув рот, с интересом слушаешь взрослого, после чего там оказывается невкусная таблетка…, а то и вообще шприц в попе =) Вот и сейчас вы побывали в похожей ситуации! – неожиданно так, чтобы испугаться никто не успел, познакомил я вас с одной ужасной вещью:))

– это не что иное, как дифференциальное уравнение, а функция – одно из его решений. Дифференциальные уравнения мы научимся решать позже, а пока что проведём «артподготовку» к этой теме. Самостоятельно:

Проверить, удовлетворяет ли функция уравнению

Здесь решение чуть выгоднее провести первым способом, т.е. найти производную и подставить в левую часть уравнения с дальнейшими преобразованиями.

Проверить, удовлетворяет ли функция уравнению

В этом же задании подстановка осуществляется в обе части уравнения и по этой причине удобнее использовать 2-й способ, получив верное либо неверное равенство.

Следует отметить, что функция вовсе не обязана удовлетворять уравнению, и иногда приходится давать противоположный ответ: «данная функция НЕ удовлетворяет данному уравнению». Но такой исход всегда неприятен, поскольку начинает мерещиться, что где-то допущена ошибка, после чего следует тщательная проверка, а зачастую и параноидальная перепроверка решения.

Примерные образцы чистового оформления примеров внизу страницы.

Как я уже намекнул в самом начале, рассматриваемое задание значительно чаще формулируется для функции нескольких, а точнее – для функции двух переменных; поэтому данный урок и оказался в разделе ФНП. Предполагается, что на данный момент вы умеете находить частные производные функции двух переменных:

Проверить, удовлетворяет ли функция уравнению

И сразу обращаю внимание на запись частных производных – в подавляющем большинстве подобных примеров вы встретите именно громоздкие обозначения. В принципе, уравнение можно переписать в виде и это ни в коем случае не будет ошибкой, но я буду придерживаться традиционного стиля, с которым вы вероятнее всего столкнётесь на практике.

Решение: в предложенное уравнение входит как сама функция, так и её частные производные первого порядка, что сподвигает к естественным действиям:

Решение, напоминаю, можно оформить двумя способами, и, на мой взгляд, здесь проще подставить найденные частные производные в левую часть:

– «на выходе» получена правая часть нашего уравнения.

Ответ: данная функция удовлетворяет данному уравнению.

Пара примеров для самостоятельного решения:

Проверить, удовлетворяет ли функция уравнению

Тут сподручнее выполнить подстановку в обе части и получить верное или неверное равенство.

То же задание для функции и уравнения

А здесь удобнее упростить левую часть и выяснить, получится ли в итоге .

Предостерегаю от мысли «Да чего тут решать, и так всё понятно». Добросовестно прорешивая примеры, вы не только отрабатываете тематическую задачу, но и шлифуете свою технику нахождения частных производных. И это тем более важно, поскольку я предлагаю вам не абы какие-то задачки, а связный, методически продуманный курс статей – чтобы полученные знания и навыки остались с вами надолго. Таким образом, наш урок вовсе не закончился – он в самом разгаре!

Решения и ответы в подвале.

Помимо частных производных 1-го порядка, в уравнении могут присутствовать и частные производные более высоких порядков, как правило – второго:

Проверить, удовлетворяет ли функция уравнению

Здесь вместо буквы «зет» использована буква «у», что является весьма распространённым вариантом обозначения функции.

Решение: сначала найдём частные производные 1-го порядка:

Затем входящие в уравнение частные производные 2-го порядка:

Подставим и в левую часть уравнения:
– в результате НЕ получена правая часть данного уравнения.

Ответ: данная функция не удовлетворяет данному уравнению.

Так действительно бывает!

Интересное задание для самостоятельного решения:

Проверить, удовлетворяет ли функция уравнению

Краткое решение и ответ в конце урока.

И заключительные примеры посвящены тому же заданию, но с функцией трёх переменных. Следует отметить, что в «реальном» практическом примере вам вряд ли напишут, скольких переменных дана функция, и этот момент всегда следует прояснять самостоятельно:

Проверить, удовлетворяет ли функция уравнению

Симметрия это не только красиво – но ещё и очень удобно!

Теперь важно не перепутать квадраты производных с производными второго порядка. Подставим найденные производные в левую часть уравнения:

– получена правая часть данного уравнения.

Ответ: дфуду

Вот так и рождаются новые ругательства =)

Симметрия по вашу душу:

Проверить, удовлетворяет ли функция уравнению

Подумайте, как рациональнее оформить решение.

Дополнительные задания по теме можно найти в задачнике Рябушко (ИДЗ 10.2), ну а я в лучших традициях своего «раннего творчества» отпускаю вас пораньше =) Сейчас ещё раз перечитаю текст и постараюсь избавить его от излишней наукообразной лексики…, хотя наставление в середине статьи всё-таки оставлю, что делать – старею =)

Надеюсь, мои уроки удовлетворяют вашим ожиданиям, и после перемены я жду вас на странице Частные производные неявно заданной функции.

Решения и ответы:

Пример 2: Решение: найдём производную:

Подставим и в левую часть уравнения:

– в результате получена правая часть данного уравнения.
Ответ: данная функция удовлетворяет данному уравнению.

Пример 3: Решение: найдём производную:

Подставим и в уравнение :

Получено верное равенство.
Ответ: данная функция удовлетворяет данному уравнению.

Пример 5: Решение: используя свойства логарифмов, преобразуем функцию:

Найдём частные производные первого порядка:

Подставим и в уравнение :

Получено неверное равенство.
Ответ: данная функция не удовлетворяет данному уравнению.

Пример 6: Решение: найдём частные производные первого порядка:

Подставим функцию и найденные производные в левую часть уравнения:

– получена правая часть данного уравнения.
Ответ: данная функция удовлетворяет данному уравнению.

Пример 8: Решение: найдём частную производную по «икс»:
(т.к. константой считается «игрек», то производная берётся от степенной функции)
Найдём смешанную частную производную 2-го порядка:

(т.к. константой считается «икс», то производная берётся как производная от показательной функции)
Подставим и в уравнение:

Получено верное равенство.
Ответ: данная функция удовлетворяет данному уравнению.

Пример 10: Решение: преобразуем функцию:

Найдем частные производные первого порядка:

Подставим найденные производные в уравнение :

Получено верное равенство
Ответ: данная функция удовлетворяет данному уравнению.

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *