Почему в космосе нет гравитации
Перейти к содержимому

Почему в космосе нет гравитации

  • автор:

Почему космонавтам недоступна искусственная гравитация?

В космосе, хотя все массы во Вселенной подчиняются силе гравитации, как обычно, не ощущается «верха» и «низа», как на Земле, поскольку космический корабль и всё, что у него на борту, ускоряется гравитацией с одинаковой скоростью.

Если поместить человека в космос, подальше от гравитационных воздействий, испытываемых им на поверхности Земли, он испытает невесомость. Хотя все массы Вселенной продолжат притягивать его, они продолжат притягивать и космический корабль, поэтому человек будет «плавать» внутри. В сериалах и фильмах типа «Звёздный путь», «Звёздные войны», «Боевой крейсер „Галактика“ и множестве других нам всегда показывают, как члены команды стабильно стоят на полу корабля вне зависимости от прочих условий. Это потребовало бы возможности создания искусственной гравитации – но с учётом законов физики в том виде, в котором мы их знаем сегодня, это слишком трудная задача.

Капитан Габриэль Лорка на мостике „Дискавери“ во время симуляции битвы с клингонами. Всю команду притягивает „вниз“ искусственная гравитация – на сегодня технология из области научной фантастики

С гравитацией связан важный урок принципа эквивалентности: равномерно ускоряющаяся система отсчёта неотличима от гравитационного поля. Если вы находитесь в ракете и не можете выглянуть наружу, у вас не будет способа понять, что происходит: вас придавливает „вниз“ сила гравитации или равномерное ускорение ракеты в одном направлении? Эта идея привела к формулированию общей теории относительности, и, спустя более чем сто лет, это самое правильное из известных нам описание гравитации и ускорения.

Идентичное поведение мяча, падающего на пол, в ускоряющейся ракете и на Земле демонстрирует принцип эквивалентности Эйнштейна

Есть ещё один трюк, который мы могли бы использовать: заставить корабль вращаться. Вместо линейного ускорения (разгонной силы ракеты) можно получить центробежное, в котором человек на борту будет чувствовать, как его притягивает корпус корабля. Этим знаменит фильм „2001: космическая одиссея“, и эта сила при достаточно большом корабле была бы неотличима от гравитации.

Но это и всё. Три типа ускорения – гравитационное, линейное и вращательное – единственные в нашем распоряжении силы, оказывающие гравитационное воздействие. И для находящихся на борту космического корабля это большая, большая проблема.

Концепция космической станции 1969 года, которую предполагалось собирать на орбите из использованных ступеней программы „Аполло“. Станция должна была вращаться вокруг центральной оси и порождать искусственную гравитацию.

Почему? Потому, что для путешествия в иную звёздную систему придётся ускорять корабль по пути туда, а по прибытию – замедлять. Если вы не сможете защититься от этих ускорений, вас ждёт фиаско. К примеру, чтобы разогнаться до „импульсной скорости“ „Звёздного пути“, до нескольких процентов от скорости света, пришлось бы выдержать ускорение в 4000 g в течение часа. Это в 100 раз больше ускорения, которое предотвратит ток крови в вашем теле – весьма неприятная ситуация, как ни крути.

Запуск шатла Колумбия в 1992 году показывает, что ускорение ракеты происходит не мгновенно, а длится достаточно долгое время, много минут. У космического корабля ускорение должно было быть гораздо большим, чем может выдержать человеческое тело

Более того, если вы не хотите быть невесомым во время долгого пути, и подвергаться ужасным биологическим эффектам вроде потери костной массы и космической слепоты, необходимо, чтобы на ваше тело действовала постоянная сила. Для других сил, кроме гравитации, это не было бы проблемой. К примеру, для электромагнитного воздействия можно было бы поместить команду в проводящую оболочку и это устраняло бы все внешние электромагнитные поля. А потом внутри можно было бы устроить две параллельные пластины и организовать постоянное электрическое поле, заставлявшее бы заряды двигаться в определённом направлении.

Эх, если бы гравитация работала так же.

Схематическая диаграмма конденсатора, две параллельные проводящие пластины которого имеют одинаковые по величине и разные по знаку заряды, что создаёт между ними электрическое поле

Никаких „гравитационных проводников“ не существует, и от гравитации нельзя защититься. Невозможно создать равномерное гравитационное поле между какими-нибудь пластинами в определённом участке пространства. Причина в том, что в отличие от электричества, создаваемого положительными и отрицательными зарядами, гравитационный „заряд“ бывает одного типа, масса-энергия. Сила гравитации всегда притягивает, и с этим ничего нельзя поделать. Придётся делать всё возможное с тремя доступными типами ускорения – гравитационным, линейным и вращательным.

Подавляющее большинство кварков и лептонов Вселенной состоят из материи, но для каждого из них существуют и частицы антиматерии, гравитационные массы которых не определены

Единственным способом создать искусственную гравитацию, способную защитить вас от эффектов ускорения корабля и придать вам постоянное притяжение „вниз“ без ускорения, было бы открыть новый тип отрицательной гравитационной массы. У всех открытых нами частиц и античастиц масса положительна, но это инерциальные массы, то есть, массы, имеющие отношение к ускорению или созданию частиц (то есть, это m из уравнений F = ma и E = mc 2 ). Мы показали, что инерциальная и гравитационная массы для всех известных частиц совпадают, но пока не проводили достаточно тщательных проверок для антиматерии и античастиц.

Коллаборация ALPHA ближе других экспериментов подошла к измерению поведения нейтральной антиматерии в гравитационном поле

И в этой области эксперименты идут прямо сейчас! В эксперименте ALPHA на ЦЕРН получили антиводород — стабильную форму нейтральной антиматерии — и сейчас работают над изоляцией её от всех других частиц на низких скоростях. Если он окажется достаточно чувствительным, мы сможем измерить, в какую сторону антиматерия будет двигаться в гравитационном поле. Если она будет падать вниз, как и обычная, тогда её гравитационная масса больше нуля, и её нельзя использовать для создания гравитационного проводника. Но если она будет падать вверх, это изменит всё. Единственный экспериментальный результат внезапно сделает искусственную гравитацию физически возможной.

Возможность получить искусственную гравитацию соблазнительна, но она требует существования отрицательной гравитационной массы. Такой массой может стать антиматерия, но это пока неизвестно.

Если у антиматерии будет отрицательная гравитационная масса, тогда сделав потолок комнаты из антиматерии, а пол из материи, мы сможем создать искусственное гравитационное поле, постоянно притягивающее вас „вниз“. Построив оболочку корабля из гравитационного проводника, мы защитим всех внутри него от сил сверхвысокого ускорения, которое иначе было бы смертельным. И, что самое прекрасное, люди в космосе больше не будут страдать от отрицательных физиологических эффектов, от нарушения вестибулярного аппарата до атрофии сердечной мышцы, досаждающих современным космонавтам. Но пока мы не откроем частицу (или набор частиц) с отрицательной гравитационной массой, искусственную гравитацию можно будет получить только через ускорение.

  • Научно-популярное
  • Космонавтика
  • Физика

В космосе нет гравитации

Первая ассоциация, возникающая при разговоре о космосе, — это, конечно же, невесомость. На ум сразу приходят космонавты, свободно летающие по кораблю и без малейшего усилия переме­щающие тяжелые предметы.

Неверное представление о причинах возникновения невесомости породило весьма распространенный миф о том, что в космосе вовсе отсутствует гравитация. Но несколько простых размышлений помогут понять, что гравитация есть везде — и на околоземной орбите, и где-то на пути от Земли к Марсу, и в бескрайнем межзвездном пространстве.

В 1687 году Исаак Ньютон впервые выводит закон всемирного тяготения, из которого становится понятно, как притягивают друг друга физические тела. Но главное, что интересовало уче­ных в этом законе, —возможность описания движения небесных тел, а именно: планет, Луны, комет, астероидов и т. д. Однако закон тяготения в том виде, в котором его открыл Ньютон, ока­зался несовершенен — дальнейшее развитие он получил в общей теории относительности (далее — ОТО) А. Эйнштейна.

В космосе нет гравитации

Но в нашем случае интересно другое — на какое расстояние ни отдалялись бы тела, их взаимное притяжение никогда не станет равным нулю. Тяготение будет сколько угодно малым, таким, что его невозможно будет измерить, но оно все-таки не станет нулевым. Это одно из основных свойств гравитации. Несмотря на то, что гравитационное воздействие является самым слабым из всех, оно не уничтожается и распространяется на бесконечные расстояния.

Выходит, что нас, жителей Земли, притягивают далекие звезды и планеты, находящиеся от нас на расстояниях в миллионы световых лет. Да, это так, но притяжение далеких солнц настолько мало, что неспособно сдвинуть даже атом, а о более крупных объектах и говорить не приходится. Но, опять же, необходимо сказать, что гравитация хоть и крайне мала, но не нулевая.

Поэтому нельзя говорить о том, что в космосе нет гравита­ции. Напротив — космос буквально «пропитан» гравитацией и в каждой точке космического пространства существует доля притяжения абсолютно всех тел, существующих во Вселенной.

Но тогда возникает вполне резонный вопрос: а почему тог­да в космосе существует невесомость? Все достаточно просто и объясняется отнюдь не отсутствием гравитации. Если тело расположено на достаточно большом удалении от космических объектов (например, корабль, летящий к другим планетам), то сила притяжения этих космических тел будет слишком мала, и к тому же они будут примерно уравновешивать друг друга.

Есть здесь и другая причина. Движение космического корабля вокруг Земли — это буквально «побег от падения». В каждый момент времени корабль, а значит, и люди, в нем находящиеся, совершает два движения — быстрое движение вдоль поверхности Земли и падение на поверхность планеты. А сложение этих движений приводит к тому, что путь корабля просто-напросто искривляется, становится круговым или эллиптическим.

Чтобы понять это, необходимо привести некоторые цифры. Ско­рость корабля, летящего на низкой орбите (около 200-300 км), поч­ти равна первой космической скорости и составляет около 8 км/с. То есть каждую секунду корабль успевает пролететь целых 8 км. Но за эту же секунду корабль приближается к Земле на 5 метров, и если бы наша планета была плоской, то через какое-то время неминуемо произошло бы столкновение. Но Земля круглая, и при этом ее поверхность каждые 8 км опускается на те же 5 метров.

Получается, что корабль буквально падает на Землю, но упасть не может, так как поверхность планеты «уходит» из-под корабля на то же расстояние, на какое он приблизился. Именно это паде­ние и вызывает появление эффекта невесомости, ведь падает не только корабль, но все, что в нем находится, в том числе и люди. А при падении, как известно, тела перестают давить на свои опоры, происходит «потеря» веса, которую можно наблюдать в падающем лифте и в самолете, совершающем снижение по особой траектории.

Таким образом, гравитация есть в любой точке космического пространства, но лишь в непосредственной близости от крупных объектов (звезд, планет, астероидов, комет и т. д.), она проявля­ется в качестве сильного и заметного притяжения, такого, как на нашей Земле.

В космосе нет гравитации: так ли это на самом деле

Есть ли в космосе гравитация

Часто в новостях или в сети можно увидеть астронавтов на орбите. Они легко делают акробатические трюки, летают и крутятся вокруг собственной оси. Это объясняют тем, что в космосе нулевая гравитация. Так ли это на самом деле? Читайте на Техно24.

Поделиться

Ответ на этот вопрос однозначен – нет, в космосе есть гравитация. Где бы вы ни оказались – на борту Международной космической станции, возле Плутона или за пределами Галактики – гравитация вас не покинет. Почему МКС не падает на Землю?

МКС

Новогодняя трапеза в 61-й экспедиции МКС / Фото NASA

Почему Международная космическая станция не падает на Землю

На самом деле она постоянно падает на Землю. Но из-за высокой скорости движения постоянно промазывает.

Разбираемся, почему так происходит

  • Если вы бросите камень, то он упадет на Землю под действием гравитации.
  • Но если вы очень сильный и сможете кинуть камень с большей скоростью, то он пролетит гораздо дальше.
  • А если вы Геркулес, то сможете бросить его еще сильнее. Но камень не полетит прямо. На него будет действовать гравитация Земли, поэтому его траектория движения будет постоянно наклоняться, повторяя очертание земного шара. В конечном итоге булыжник пролетит через половину планеты и упадет.
  • И если вы сильнее Геркулеса, то бросили камень с такой силой, что придали ему скорость 7,9 километра в секунду. Такая скорость называется первой космической. Камень полетел и сразу начал падать, огибая земной шар. Но поскольку скорость его очень высока, он никогда на нее не упадет.

Эта аналогия с камнем справедлива только тогда, если объект находится в космосе. Чем ближе к земной поверхности – тем плотнее атмосфера, которая не позволит ни камню, ни Международной космической станции двигаться с высокой скоростью долго. На высоте орбиты МКС плотность атмосферы почти не ощутима, поэтому станция летает там, почти не задействуя двигатели.

Хотя на высоте 400 километров над Землей плотность атмосферы очень низкая, и все же этого хватает, чтобы постоянно снижать скорость движения МКС. Поэтому периодически Международная космическая станция задействует двигатели для того, чтобы разогнаться и не упасть на Землю.

Экипаж станции постоянно находится в состоянии свободного падения, что мы называем невесомостью. Такого состояния можно достичь и на Земле. Для этого используют специальные самолеты.

Невесомость в самолете: смотреть видео онлайн

Насколько слабее гравитация на высоте орбиты Международной космической станции

Сила гравитационного притяжения между двумя телами прямо пропорциональна произведению их масс и обратно пропорциональна расстоянию между ними. Проще говоря, на высоте 400 километров земная гравитация на 10% слабее гравитации на поверхности планеты.

Если бы мы построили башню высотой 400 километров, то на ее верхушке человек весом 100 килограммов весил бы 90 килограммов. И если бы человек прыгнул с нее, то упал бы на Землю, а не полетел, как МКС. Ведь скорость движения МКС – 7,9 километра в секунду.

Почему у нас нет искусственной гравитации в космосе?

Поместите человека в космос, подальше от гравитационных пут земной поверхности, и он будет ощущать невесомость. Хотя все массы Вселенной все еще будут воздействовать на него гравитационно, они также будут притягивать и любой космический аппарат, в котором находится человек, поэтому он будет плавать. И все же по телевизору нам показывали, что экипаж некоего космического судна вполне успешно ходит ногами по полу при любых условиях. Для этого используется искусственная гравитация, создаваемая установками на борту фантастического судна. Насколько это близко к реальной науке?

Почему у нас нет искусственной гравитации в космосе? Фото.

Почему у нас нет искусственной гравитации в космосе? Фото.

Капитан Габриэль Лорка на мостике «Дискавери» во время имитации битвы с клингонцами. Весь экипаж притягивается искусственной силой тяжести, и это как бы уже канон

Касательно гравитации, большим открытием Эйнштейна стал принцип эквивалентности: при равномерном ускорении система отсчета неотличима от гравитационного поля. Если бы вы были на ракете и не могли видеть Вселенную через иллюминатор, вы бы и понятия не имели о том, что происходит: вас тянет вниз сила гравитации или же ускорение ракеты в определенном направлении? Такой была идея, которая привела к общей теории относительности. Спустя 100 лет это самое правильное описание гравитации и ускорения, которое нам известно.

Почему у нас нет искусственной гравитации в космосе? Фото.

Идентичное поведение мяча, падающего на пол в летящей ракете (слева) и на Земле (справа), демонстрирует принцип эквивалентности Эйнштейна

Есть и другой трюк, как пишет Итан Зигель, который мы можем использовать, если захотим: мы можем заставить космический корабль вращаться. Вместо линейного ускорения (вроде тяги ракеты) можно заставить работать центростремительное ускорение, чтобы человек на борту чувствовал внешний корпус космического корабля, подталкивающий его к центру. Такой прием был использован в «Космической одиссее 2001 года», и если бы ваш космический корабль был достаточно большим, искусственная сила тяжести была бы неотличима от настоящей.

Только вот одно но. Три этих типа ускорения — гравитационное, линейное и вращательное — единственные, которые мы можем использовать для имитации эффектов гравитации. И это огромная проблема для космического аппарата.

Почему у нас нет искусственной гравитации в космосе? Фото.

Концепт станции 1969 года, которая должна была собираться на орбите из отработанных этапов программы «Аполлон». Станция должна была вращаться на своей центральной оси для создания искусственной гравитации

Почему? Потому что если вы хотите отправиться в другую звездную систему, вам нужно будет ускорить ваш корабль, чтобы туда добраться, а затем замедлить его по прибытии. Если вы не сможете оградить себя от этих ускорений, вас ждет катастрофа. Например, чтобы ускориться до полного импульса в «Звездном пути», до нескольких процентов световой скорости, придется испытать ускорение в 4000 g. Это в 100 раз больше ускорения, которое начинает препятствовать кровотоку в теле.

Почему у нас нет искусственной гравитации в космосе? Фото.

Запуск космического шаттла «Колумбия» в 1992 году показал, что ускорение протекает на протяжении длительного периода. Ускорение космического корабля будет во много раз выше, и человеческое тело не сможет с ним справиться

Если вы не хотите быть невесомым во время длительного путешествия — чтобы не подвергать себя ужасному биологическому износу вроде потери мышечной и костной массы — на тело постоянно должна действовать сила. Для любой другой силы это вполне легко сделать. В электромагнетизме, например, можно было бы разместить экипаж в проводящей кабине, и множество внешних электрических полей просто исчезли бы. Можно было бы расположить две параллельные пластины внутри и получить постоянное электрическое поле, выталкивающее заряды в определенном направлении.

Если бы гравитация работала таким же образом.

Такого понятия, как гравитационный проводник, просто не существует, как и возможности оградить себя от гравитационной силы. Невозможно создать однородное гравитационное поле в области пространства, например, между двумя пластинами. Почему? Потому что в отличие от электрической силы, генерируемой положительными и отрицательными зарядами, существует только один тип гравитационного заряда, и это масса-энергия. Гравитационная сила всегда притягивает, и от нее никуда не скрыться. Вы можете лишь использовать три типа ускорения — гравитационное, линейное и вращательное.

Почему у нас нет искусственной гравитации в космосе? Фото.

Подавляющее большинство кварков и лептонов во Вселенной состоит из материи, но у каждого из них существуют и античастицы из антиматерии, гравитационные массы которых не определены

Единственный способ, с помощью которого можно было бы создать искусственную гравитацию, которая защитит вас от последствий ускорения вашего корабля и обеспечит вам постоянную тягу «вниз» без ускорения, будет доступен, если вы откроете частицы отрицательной гравитационной массы. Все частицы и античастицы, которые мы нашли до сих пор, обладают положительной массой, но эти массы инерциальны, то есть о них можно судить только при создании или ускорении частицы. Инерционная масса и гравитационная масса одинаковы для всех частиц, которые мы знаем, но мы никогда не проверяли свою идею на антиматерии или античастицах.

В настоящее время проводятся эксперименты именно по этой части. Эксперимент ALPHA в ЦЕРН создал антиводород: стабильную форму нейтральной антиматерии, и работает над изолированием ее от всех других частиц. Если эксперимент будет достаточно чувствительным, мы сможем измерить, как античастица попадает в гравитационное поле. Если падает вниз, как и обычное вещество, то у нее положительная гравитационная масса и ее можно использовать для строительства гравитационного проводника. Если падает в гравитационном поле вверх, это все меняет. Один лишь результат, и искусственная гравитация может внезапно стать возможной.

Почему у нас нет искусственной гравитации в космосе? Фото.

Возможность получения искусственной гравитации невероятно манит нас, но основана на существовании отрицательной гравитационной массы. Антиматерия может быть такой массой, но мы пока этого не доказали

Если антиматерия имеет отрицательную гравитационную массу, то при создании поля из обычного вещества и потолка из антивещества, мы могли бы создать поле искусственной гравитации, которое всегда тянуло бы вас вниз. Создав гравитационно-проводящую оболочку в виде корпуса нашего космического корабля, мы защитили бы экипаж от сил сверхбыстрого ускорения, которые в противном случае стали бы смертельными. И что самое крутое, люди в космосе не испытывали бы больше негативных физиологических эффектов, которые сегодня преследуют астронавтов. Но пока мы не найдем частицу с отрицательной гравитационной массой, искусственная гравитация будет получаться только за счет ускорения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *