Почему время подъема равно времени падения
Перейти к содержимому

Почему время подъема равно времени падения

  • автор:

Почему время подъема равно времени падения

Свободным падением тел называют падение тел на Землю в отсутствие сопротивления воздуха (в пустоте). В конце XVI века знаменитый итальянский ученый Г. Галилей опытным путем с доступной для того времени точностью установил, что в отсутствие сопротивления воздуха все тела падают на Землю равноускоренно, и что в данной точке Земли ускорение всех тел при падении одно и то же . До этого в течение почти двух тысяч лет, начиная с Аристотеля, в науке было принято считать, что тяжелые тела падают на Землю быстрее легких.

Ускорение, с которым падают на Землю тела, называется ускорением свободного падения . Вектор ускорения свободного падения обозначается символом он направлен по вертикали вниз. В различных точках земного шара в зависимости от географической широты и высоты над уровнем моря числовое значение оказывается неодинаковым, изменяясь примерно от на полюсах до на экваторе. На широте Москвы . Обычно, если в расчетах не требуется высокая точность, то числовое значение у поверхности Земли принимают равным или даже .

Простым примером свободного падения является падение тела с некоторой высоты без начальной скорости. Свободное падение является прямолинейным движением с постоянным ускорением. Если направить координатную ось вертикально вверх, совместив начало координат с поверхностью Земли, то для анализа свободного падения без начальной скорости можно использовать формулу (*) §1.4, положив , , . Обратим внимание на то, что если тело при падении оказалось в точке с координатой , то перемещение тела равно . Эта величина отрицательна, так как тело при падении перемещалось навстречу выбранному положительному направлению оси . В результате получим:

Скорость отрицательна, так как вектор скорости направлен вниз.

Время падения тела на Землю найдется из условия :

Скорость тела в любой точке составляет:

В частности, при скорость падения тела на Землю равна

Пользуясь этими формулами, можно вычислить время падения тела с данной высоты, скорость падения тела в любой момент после начала падения и в любой точке его траектории и т. д.

Аналогичным образом решается задача о движении тела, брошенного вертикально вверх с некоторой начальной скоростью . Если ось по-прежнему направлена вертикально вверх, а ее начало совмещено с точкой бросания, то в формулах равноускоренного прямолинейного движения следует положить: , , . Это дает:

Через время скорость тела обращается в нуль, т. е. тело достигает высшей точки подъема. Зависимость координаты от времени выражается формулой

Тело возвращается на землю () через время , следовательно, время подъема и время падения одинаковы. Во время падения на землю скорость тела равна , т. е. тело падает на землю с такой же по модулю скоростью, с какой оно было брошено вверх.

Максимальная высота подъема

Рисунок 1.5.1.

Графики скоростей для различных режимов движения тела с ускорением

На рис. 1.5.1 представлены графики скоростей для трех случаев движения тела с ускорением . График I соответствует случаю свободного падения тела без начальной скорости с некоторой высоты . Падение происходило в течение времени . Из формул для свободного падения легко получить: (все числа в этих примерах округлены, ускорение свободного падения принято равным 10 м/с 2 ).

График II – случай движения тела, брошенного вертикально вверх с начальной скоростью . Максимальная высота подъема . Тело возвращается на землю через время .

График III – продолжение графика I. Свободно падающее тело при ударе о землю отскакивает (мячик), и его скорость за очень короткое время меняет знак на противоположный. Дальнейшее движение тела не отличается от случая II.

Задача о свободном падении тел тесно связана с задачей о движении тела, брошенного под некоторым углом к горизонту. Для кинематического описания движения тела удобно одну из осей системы координат (ось ) направить вертикально вверх, а другую (ось ) – расположить горизонтально. Тогда движение тела по криволинейной траектории можно представить как сумму двух движений, протекающих независимо друг от друга – движения с ускорением свободного падения вдоль оси и равномерного прямолинейного движения вдоль оси . На рис. 1.5.2 изображен вектор начальной скорости тела и его проекции на координатные оси.

Рисунок 1.5.2.

Движение тела, брошенного под углом к горизонту. Разложение вектора начальной скорости тела по координатным осям

Таким образом, для движения вдоль оси имеем следующие условия:

а для движения вдоль оси

Приведем здесь некоторые формулы, описывающие движение тела, брошенного под углом к горизонту.

Докажите, что начальная скорость тела, брошенного вертикально вверх, равна его конечной скорости падения, а время подъема

Пожалуйста, войдите или зарегистрируйтесь для публикации ответа на этот вопрос.

решение вопроса

Похожие вопросы

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

  • Все категории
  • экономические 43,679
  • гуманитарные 33,657
  • юридические 17,917
  • школьный раздел 612,703
  • разное 16,911

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Свободное падение тел

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря — падение в пустоте. Конечно, отсутствие сопротивления воздуха — это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения — ускорение, с которым все тела падают на Землю.

Ускорение свободного падения приблизительно равно 9 , 81 м с 2 и обозначается буквой g . Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 м с 2 .

Земля — не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения — на полюсах ( ≈ 9 , 83 м с 2 ) , а самое малое — на экваторе ( ≈ 9 , 78 м с 2 ) .

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его.

Свободное падение — прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h = v 0 + g t 2 2 .

Так как начальна скорость равна нулю, перепишем:

Отсюда находится выражение для времени падения тела с высоты h :

Принимая во внимание, что v = g t , найдем скорость тела в момент падения, то есть максимальную скорость:

v = 2 h g · g = 2 h g .

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

Подставив v = 0 , найдем время подъема тела на максимальную высоту:

Время падения совпадает со временем подъема, и тело вернется на Землю через t = 2 v 0 g .

Максимальная высота подъема тела, брошенного вертикально:

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a = — g . Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10 м с 2 .

Движение тела, брошенного вертикально вверх

Первый график — это падение тела с некоторой высоты без начальной скорости. Время падения t п = 1 с . Из формул и из графика легко получить, что высота, с которой падало тело, равна h = 5 м .

Второй график — движение тела, брошенного вертикально вверх с начальной скоростью v 0 = 10 м с . Максимальная высота подъема h = 5 м . Время подъема и время падения t п = 1 с .

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси O Y тело движется равноускоренно с ускорением g , начальная скорость этого движения — v 0 y . Движение вдоль оси O X — равномерное и прямолинейное, с начальной скоростью v 0 x .

Движение тела, брошенного под углом к горизонту

Условия для движения вдоль оси О Х :

x 0 = 0 ; v 0 x = v 0 cos α ; a x = 0 .

Условия для движения вдоль оси O Y :

y 0 = 0 ; v 0 y = v 0 sin α ; a y = — g .

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t = 2 v 0 sin α g .

Дальность полета тела:

L = v 0 2 sin 2 α g .

Максимальная дальность полета достигается при угле α = 45 ° .

L m a x = v 0 2 g .

Максимальная высота подъема:

h = v 0 2 sin 2 α 2 g .

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука — баллистика.

Инфофиз

Время падения тела, брошенного под углом к горизонту

Время падения тела, брошенного под углом к горизонту — определяется из условия, что общее время движения t=t1+t2

Время падения тела, брошенного под углом к горизонту

т.е. время падения равно времени подъема.

Движение тела, брошенного под углом к горизонту:

Движение тела, брошенного под углом к горизонту

v0 — начальная скорость тела, брошенного под углом к горизонту

v — проекция начальной скорости на ось x

v0y — проекция начальной скорости на ось y

a — угол под которым было брошено тело

t — общее время тела в полете

t1=tmax — время подъема тела на максимальную высоту

t2 — время падения тела с максимальной высоты

g — ускорение свободного падения

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *