Емкость диода на что влияет
Перейти к содержимому

Емкость диода на что влияет

  • автор:

Постникова ВН — ЛК весна 2021 / Пробой и емкость диода

Рис. 1. Теоретическая и реальная вольтамперная характеристика p-n перехода.

На графике прямой ветви реальной вольтамперной характеристики видно, что сопротивление открытого диода больше сопротивления, определяемого по теоретической кривой. Это связано с влиянием объёмного сопротивления n— и p-областей полупроводника. При протекании через диод прямого тока полупроводниковая структура нагревается, и если температура превысит при этом предельно допустимое значение, то произойдет разрушение кристаллической решетки полупроводника и диод выйдет из строя. Поэтому величина прямого тока диода ограничивается предельно допустимым значением Iпр.max при заданных условиях охлаждения.

Обратная ветвь отличается от теоретической характеристики по двум причинам: генерация носителей зарядов в переходе и его электрический пробой.

Количество носителей заряда, генерируемых в электронно-дырочном переходе, пропорционально объему запирающего слоя. Он, в свою очередь, зависит от ширины p-n перехода, но так как она пропорциональна , то ток генерации свободных зарядов Iген будет расти при увеличении обратного напряжения. Поэтому при увеличении обратного напряжения на вольтамперной характеристике реального диода наблюдается небольшой рост обратного тока. Кроме того, обратный ток диода увеличивается из-за тока утечки по поверхности кристалла.

Если увеличивать напряжение, приложенное в обратном направлении к диоду, то сначала обратный ток будет изменяться незначительно, а затем при определенной величине Uпроб начнется его быстрое увеличение (рис. 1), что говорит о наступлении пробоя p–n-перехода. Существуют несколько видов пробоя p–n-перехода в зависимости от концентрации примесей в полупроводнике, от ширины p–n-перехода и температуры:

Необратимый пробой для полупроводникового прибора является нерабочим и недопустимым режимом.

Тепловой пробой. Если количество тепла, выделяющегося в р-n-переходе, превышает количество тепла, отводимого от него, то разогрев перехода приводит к росту процесса генерации носителей и, следовательно, к увеличению силы тока, текущего через переход, что в свою очередь ведет к дальнейшему повышению температуры и т. д. В итоге такого лавинообразно развивающегося перегрева сила тока продолжает возрастать и наступает разрушение материала полупроводника. Тепловой пробой может возникнуть самостоятельно, но может оказаться и следствием развивающегося электрического пробоя. Поэтому обычно в цепь р-n-перехода последовательно включают ограничительный резистор, сопротивление которого подбирается так, чтобы сила тока не превосходила допустимого значения.

Поверхностный пробой. Лавинный или туннельный электрический пробой p-n-перехода может происходить не только в объеме полупроводника, но и по его поверхности. На поверхностный пробой значительное влияние может оказать искажение электрического поля в p-n-переходе поверхностными зарядами. Наличие поверхностного заряда связано с обрывом кристаллической решетки и с наличием в ней дефектов и примесей (особенно адсорбированных молекул воды). В определенных случаях поверхностный заряд приводит к сужению запорного слоя у поверхности и увеличению в приповерхностной области напряженности поля, благодаря этому пробой у поверхности начинается при меньших значениях обратного напряжения смещения, чем в объеме. Для уменьшения вероятности поверхностного пробоя применяют различные защитные покрытия, предотвращающие проникновение на поверхность p-n-перехода влаги и различных активных примесей.

Существуют два вида электрического пробоя: лавинный и туннельный.

Лавинный пробой возникает в широких p-n переходах, образованных полупроводниками с небольшой концентрацией примесей. Он возникает тогда, когда длина свободного пробега электрона в полупроводнике значительно меньше толщины p-n перехода. За время свободного пробега электроны приобретают кинетическую энергию, достаточную для ионизации атомов кристаллической решетки полупроводника в p-n переходе. Образовавшаяся при этом пара свободных носителей заряда “электрон – дырка” тоже примет участие в ударной ионизации. Процесс нарастает лавинообразно и приводит к значительному возрастанию обратного тока.

Туннельный пробой своим происхождением обязан так называемому туннельному эффекту. Возникает этот эффект благодаря непосредственному воздействию сильного электрического поля на атомы кристаллической решетки полупроводника в р-n-переходе. Под действием этого поля происходит разрыв валентной связи и электрон становится свободным носителем, переходя в межузельное пространство и оставляя на своем месте дырку. Зонная схема туннельного пробоя приведена на рисунке 2. Электроны из валентной зоны p-полупроводника переходят, не изменяя свою энергию, в зону проводимости полупроводника n-типа, пересекая запрещенную зону р-n-перехода. Необходимым условием туннельного перехода является незанятость в зоне проводимости n-полупроводника энергетического уровня, соответствующего энергии переходящего из р-области электрона.

Рис. 2. Зонная диаграмма тунельного пробоя.

Туннельный пробой наблюдается в узких р-n-переходах, которые могут быть созданы только на границе раздела высоколегированных областей (высокая концентрация примесей). Для того чтобы вызвать туннельный пробой, необходимо создать поле с напряженностью порядка 10 5 -10 6 В/см. Поскольку туннельный пробой возникает только в узких переходах порядка 10 -5 -10 -6 см, то для получения пробивных значений напряженности поля оказывается достаточной обратная разность потенциалов всего в несколько вольт.

Так как свойства p-n-перехода после электрического пробоя (лавинного или туннельного) восстанавливаются при выключении обратного напряжения, то в технике во многих случаях p-n-переход используется именно в режиме пробоя (полупроводниковые стабилитроны, туннельные обращенные диоды и пр.).

Емкость диода (pn перехода)

Изменение внешнего напряжения на p-n переходе dU приводит к изменению заряда на границе p-n перехода. Т.е. p-n переход ведет себя как конденсатор, емкость которого С=dQ/dU.

В зависимости от природы заряда различают две емкости: барьерная и диффузионная.

Барьерная ёмкость определяется нескомпенсированными зарядами ионов примеси вблизи p-n перехода и изменяется при изменении его толщины под воздействием запирающего напряжения. Идеальный p-n переход при анализе можно представить в виде плоского конденсатора, емкость которого вычисляется при помощи следующей формулы:

Сбар = εоεS/d,

где d толщина запирающего слоя.

С ростом обратного напряжения ширина запирающего слоя увеличивается и, следовательно барьерная емкость уменьшается.

Рис. 3. Зависимость барьерной ёмкости от напряжения

Зависимость барьерной ёмкости от напряжения широко используется в радиоэлектронной технике. Изготавливаются специальные электронные приборы: варикапы, основным свойством которых является изменение ёмкости от напряжения. Это свойство используется в генераторах, управляемых напряжением и частотных модуляторах.

В других электронных приборах, таких как выпрямительные диоды, биполярные и полевые транзисторы, барьерная ёмкость p-n перехода является фактором, ограничивающим частотный диапазон прибора, и её стараются уменьшать. Барьерная емкость увеличивается при увеличении концентрации примеси NА и NД, и уменьшается при уменьшении концентрации.

Диффузионная емкость. Прямое включение p-n перехода приводит к тому, что значительное количество основных носителей заряда диффузионно переходят в соседнюю область, т.к. потенциальный барьер на границе снижается. Растет ток диффузии. При этом ток дрейфа не изменяется, т.к. он зависит только от количества неосновных носителей заряда на границе p-n перехода. Дополнительная диффузия приводит к введению неосновных носителей заряда в соответствующие области: электронов в p область и дырок в n область полупроводника.

Повышение концентрации неосновных носителей заряда в p— и n-областях при прямом включении напряжения называется инжекцией.

При протекании диффузионного тока через p-n переход, при подаче напряжения в прямом направлении, растет концентрация неосновных носителей заряда, инжектированных в p— и n-области.

Это приводит к накоплению заряда вблизи p-n перехода. Это явление можно рассматривать как появление дополнительной емкости, а так как она образуется диффузионным током, то эта ёмкость получила название диффузионной.

Рис. 4. Зависимость диффузионной ёмкости от напряжения

Полная емкость p-n перехода определяется суммой барьерной и диффузионной емкостей:

При прямом включении p-n перехода преобладает диффузионная емкость, а при обратном — барьерная.

Емкость p-n перехода оказывает серьезное влияние на быстродействие полупроводниковых приборов. С этой точки зрения контакт металл полупроводник выгодно отличается от p-n контакта. Для создания выпрямляющего контакта между металлом и полупроводником n-типа должно выполняться условие Wмет Wп/п . В таком контакте инжекция неосновных носителей отсутствует, так как прямой ток – это движение основных носителей заряда — электронов. Поэтому такой контакт обладает только барьерной емкостью. Такие полупроводниковые приборы обладают высоким быстродействием, так как нет накопления и рассасывания неосновных носителей заряда.

Диоды высокого качества получают при контакте кремния с молибденом, золотом, платиной и нихромом.

8.Барьерная и диффузионная емкости диода.

Полупроводниковый диод инерционен по отношению к достаточно быстрым изменениям тока или напряжения, поскольку новое распределение носителей устанавливается не сразу. Как известно , внешнее напряжение меняет ширину перехода, а значит, и величину объемных зарядов в переходе. Кроме того, при инжекции или экстракции меняются заряды в области базы (роль зарядов в эмиттере мало существенна). Следовательно, диод обладает емкостью, которую можно считать подключенной параллельно p-n переходу. Эту емкость можно разделить на две составляющие: барьерную емкость, отражающую перераспределение зарядов в переходе, и диффузионную емкость, отражающую перераспределение зарядов в базе. Такое разделение в общем условное, но оно удобно на практике, поскольку соотношение обеих емкостей различно при разных полярностях приложенного напряжения. При прямом напряжении главную роль играют избыточные заряды в базе и соответственно — диффузионная емкость. При обратном напряжении избыточные заряды в базе малы и главную роль играет барьерная емкость. Заметим заранее, что обе емкости не линейны: диффузионная емкость зависит от прямого тока, а барьерная — от обратного напряжения.

Определим величину барьерной емкости, считая переход несимметричным типа n + -p. Тогда протяженность отрицательного заряда в базе р-типа можно считать равной всей ширине перехода: . Запишем модуль этого заряда:

, (3.47)

где N — концентрация примеси в базе; S — площадь перехода. Такой же (но положительный) заряд будет в эмиттерном слое.

Представим, что эти заряды расположены на обкладках воображаемого конденсатора, емкость которого можно определить как

Учитывая выражение ширины перехода при обратном включении, и дифференцируя заряд Q по напряжению, окончательно получаем:

(3.48)

где и соответственно ширина и высота потенциального барьера при равновесном состоянии.

При определении диффузионной емкости будем учитывать, что перераспределение заряда в базе происходит за счет инжекции неосновных носителей в базу. Поскольку база р — типа , то неосновными носителями являются электроны. Тогда для толстой базы приращение концентрации определится из формулы (3.6а), в которой при условии можно пренебречь 1.

Определим как

При

(3.49)

. (3.50а)

Учитывая значение теплового тока (3.11в) для толстой базы и связь , окончательно получим:

, (3.50б)

где диффузионный электронный ток в толстой базе;

 — время жизни неосновных носителей в базе.

В случае тонкой базы с учетом формулы (3.6б) при условии U>>T определится как

(3.51)

Дифференцируя заряд по напряжению, и учитывая значение теплового тока для тонкой базы (3.11б), окончательно получаем:

(3.52)

где диффузионный электронный ток в тонкой базе;

среднее время диффузии или время пролета носителей через тонкую базу при чисто диффузионном механизме движения.

Имея в виду, что диод обладает емкостью, можно составить его полную эквивалентную схему для переменного тока (рис.3.10а).

Сопротивление R0 в этой схеме представляет суммарное сравнительно небольшое сопротивление n- и p- областей и контактов этих областей с выводами. Нелинейное сопротивление Rнл при прямом включении равно Rпр, т.е. невелико, а при обратном напряжении Rнл= Rобр, т.е. оно очень большое. Приведенная эквивалентная схема в различных частотных случаях может быть упрощена. На низких частотах емкостное сопротивление очень велико и емкость можно не учитывать. Тогда при прямом смещении в эквивалентной схеме остаются лишь сопротивления R0 и Rпр (рис.3.10б),

а при обратном напряжении – только сопротивление Rобр, так как R0обр (рис.3.10в).

На высоких частотах емкости имеют сравнительно небольшое сопротивление. Поэтому при прямом напряжении получается схема по рис.3.10г, (если частота не очень высокая, то Сдиф практически не влияет),

а при обратном остаются Rобр и Сб (рис.3.10д).

Следует иметь ввиду, что существует еще емкость Св между выводами диода, которая может заметно шунтировать диод на очень высоких частотах. На СВЧ может также проявляться индуктивность выводов.

9. Классификация диодов.

Классификация диодов проводится в основном:

1) по технологическим методам создания электрических переходов и диодных структур

2) по выполняемой функции диодов.

По технологии изготовления диоды могут быть точечными и плоскостными. Основные характеристики точечных диодов: площадь p-n-перехода мала, имеют малую емкость (менее 1пФ), малые токи (не более 1 или десятков мА). Применяются на высоких частотах вплоть до свч. Технология: к пластинке германия n-типа или кремния n-типа приваривается при помощи большого импульса тока вольфрамовая нить, покрытая акцепторной примесью (для германия- индий, для кремния- алюминий).

Плоскостные диоды: технология изготовления может быть либо вплавление, либо диффузия. При вплавлении на очищенную поверхность полупроводниковой пластинки обычно n-типа помещается таблетка металлического акцепторного материала, например алюминий, если полупроводник кремний. При нагревании до 600…700 0 С она расплавляется и растворяет в себе прилегающий слой кремния, температура плавления которого значительно выше. После охлаждения у поверхности пластинки слой кремния р + -типа, насыщенный алюминием (эмиттер р-типа, база- n-типа). Диффузия: примесные атомы поступают обычно из газовой среды в полупроводниковую пластинку через ее поверхность при высокой температуре (около 1000 0 ) и распространяются вглубь вследствие диффузии, т.е. теплового движения. Процесс осуществляется в специальных диффузионных печах, где с высокой точностью поддерживается температура и время процесса. Чем больше время и температура, тем дальше примеси проникают в глубь пластины. Диффузионный p-n-переход получается плоским, а его площадь велика и равна площади исходной пластины, рабочие токи достигают десятков ампер.

По выполняемой функции различают диоды выпрямительные, импульсные, преобразовательные, переключательные, детекторные диоды, стабилитроны, варикапы и т.д. Отдельные классы диодов могут подразделяться на подклассы в зависимости от диапазона рабочих частот (низкочастотные, высокочастотные, СВЧ-диоды, диоды оптического диапазона). Различают диоды также по полупроводниковому материалу: наиболее широко применяется кремний, вытесняющий распространенный ранее германий. Кремниевые диоды имеют большую максимальную рабочую температуру (Si – 125…150 0 C, Ge – 70…80 0 C) и на несколько порядков меньший обратный ток. Непрерывно увеличивается число диодов на арсениде галлия (в частности, металл-полупроводниковых), превосходящих по параметрам кремниевые диоды.

Рассмотрим некоторые типы диодов и их основные параметры.

1.2.4. Емкость p-n-перехода

Общая емкость p-n-перехода измеряется между выводами кристалла при заданных постоянном напряжении (смещении) и частоте гармонического напряжения, прикладываемых к переходу. Она складывается из барьерной, диффузионной емкостей и емкости корпуса кристалла:

Барьерная (или зарядная) емкость обусловлена нескомпенсированным зарядом ионизированных атомов примеси, сосредоточенными по обе стороны от границы перехода. Эти объемные заряды неподвижны и не участвуют в процессе протекания тока. Они и создают электрическое поле перехода.

При увеличении обратного напряжения область пространственного заряда и сам заряд увеличиваются, причем это увеличение происходит непропорционально.

Барьерная емкость определяется как

где Sпер – площадь перехода.

Барьерная емкость составляет десятки — сотни пикофарад.

Диффузионная емкость обусловлена изменением величины объемного заряда, вызванного изменением прямого напряжения и инжекцией неосновных носителей в рассматриваемый слой. В результате в n-базе возникает объемный заряд дырок, который практически мгновенно (за несколько наносекунд) компенсируется зарядом собственных подошедших к дыркам электронов. Диффузионную емкость часто выражают как линейную функцию тока, учитывая экспоненциальный характер ВАХ. При этом

где — время жизни носителей для толстой базы или среднее время пролета для тонкой базы.

Диффузионная емкость составляет сотни – тысячи пикофарад.

При прямом напряжении на переходе общая емкость определяется в основном диффузионной емкостью, а при обратном напряжении – барьерной. Общий вид зависимости емкости перехода от напряжения на нем показан на рис. 1.6. Эту зависимость называют вольт – фарадной характеристикой перехода.

© Андреевская Т.М. Кафедра РЭ, МИЭМ, 2005.

2. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Полупроводниковый диод (ПД) представляет собой двухэлектродный прибор, действие которого основано на использовании электрических свойств p-n перехода или контакта металл-полупроводник. К этим свойствам относятся: односторонняя проводимость, нелинейность вольтамперной характеристики, наличие участка вольтамперной характеристики, обладающего отрицательным сопротивлением, резкое возрастание обратного тока при электрическом пробое, существование емкости p-n перехода. В зависимости от того, какое из свойств p-n перехода используется, полупроводниковые диоды могут быть применены для целей выпрямления, детектирования, преобразования, усиления и генерирования электрических колебаний, а также для стабилизации напряжения в цепях постоянного тока и в качестве переменных реактивных элементов.

В большинстве случаев ПД отличается от симметричного p-n перехода тем, что p- область диода имеет значительно большее количество примесей, чем n- область (несимметричный p-n переход ), т.е. . В этом случае n- область носит название базы диода. При подаче на такой переход обратного напряжения ток насыщения будет состоять почти только из потока дырок из базы в p- область и будет иметь меньшую величину, чем для симметричного перехода. При подаче прямого напряжения прямой ток тоже почти полностью будет состоять из потока дырок из p- области в базу и уже при небольших прямых напряжениях будет возрастать экспоненциально (уравнение в/а характеристики p-n перехода имеет вид:

Применение ПД для тех или иных целей определяет требования, предъявляемые к его характеристикам, к величинам преобразуемых мощностей, токов и напряжений. Эти требования могут быть удовлетворены с помощью соответствующего выбора материала, из которого изготовляется диод, технологией изготовления p-n перехода и конструкцией диода.

В соответствии с этим ПД разделяются ряд основных типовых групп. Существующая классификация подразделяет ПД следующим образом:

а) по назначению (выпрямительные, детекторные, преобразовательные, стабилитроны, варикапы и др.);

б) по частотным свойствам (низкочастотные, высокочастотные, СВЧ);

в) по типу перехода (плоскостные, точечные);

г) по исходному материалу (германиевые, кремниевые, арсенид-галлиевые и т.д.);

Кроме того существует разделение ПД внутри одной группы в соответствии с электрическими параметрами.

Кроме специфических параметров, характеризующих данную типовую группу, существуют параметры общие для всех ПД независимо от их специального назначения. К ним относятся: рабочий интервал температур, допустимое обратное напряжение, допустимый выпрямленный ток, допустимая мощность рассеивания.

Рабочий интервал температур.

При повышении температуры растет собственная электропроводность проводника (увеличивается генерация пар носителей заряда электрон-дырка), растет ток насыщения и растет вероятность пробоя p-n перехода.

Максимально допустимая температура перехода тем больше, чем шире запрещенная зона полупроводника. Так для германиевых диодов допустимый интервал температур окружающей среды лежит в пределах , а для кремниевых в пределах . При понижении температуры увеличивается сопротивление диода как прямое, так и обратное, а также появляется вероятность механических повреждений кристалла из-за увеличивающейся хрупкости.

Допустимое обратное напряжение

Обычно за допустимое обратное напряжение принимается величина:

где — напряжение, при котором возникает пробой p-n перехода.

Значение зависит от температуры и от удельного сопротивления полупроводника . Последнее объясняется тем, что напряженность поля p-n перехода, а значит и напряжение пробоя зависят от ширины перехода, которая в свою очередь зависит от концентрации примесей, т.е. от удельного сопротивления полупроводника. Так как p-n переход тем шире, чем больше удельное сопротивление полупроводника, то и будет тем больше, чем больше удельное сопротивление исходного материала.

Если требуется получить большое выпрямленное напряжение, при котором к диоду будет приложено обратное напряжение большее, чем допустимое, применяют последовательное включение диодов. Так как величины обратных сопротивлений диодов не одинаковы, то обратные напряжения при последовательном включении распределяются между диодами неравномерно и диод, имеющий большее обратное сопротивление, может быть пробит. Во избежание этого каждый из последовательно включенных диодов шунтируют сопротивлением такой величины, чтобы распределение напряжений на диодах в основном определялось этими сопротивлениями.

Допустимый выпрямленный ток

Так как при протекании тока возрастает температура перехода, то величина допустимого тока ограничивается допустимой температурой перехода. Для того, чтобы получить выпрямленный ток больше допустимой величины, можно включить несколько диодов параллельно. Так как диоды обладают разным прямым сопротивлением, то токи распределяются неравномерно и может оказаться, что ток, протекающий через диод с наименьшим сопротивлением, превысит допустимое значение. Во избежание этого последовательно с каждым из диодов включается сопротивление.

Предельно допустимая мощность рассеивания .

Предельно допустимая мощность рассеивания зависит от конструкции диода, так и от температуры окружающей среды, т.е. от условий охлаждения.

Очевидно, что рабочие режимы в схемах надо выбирать так, чтобы:

где I — ток, протекающий через диод,

U — напряжение, приложенное к диоду.

2.2 Выпрямительные диоды (силовые диоды. вентили).

Выпрямительные ПД применяются для преобразования переменного тока низкой частоты (до 50кГц) в ток одного направления (выпрямление переменного тока). Обычно рабочие частоты выпрямительных ПД малой и средней мощности не превышают 20 кГц, а диодов большой мощности — 50 Гц.

Возможность применения p-n перехода для целей выпрямления обусловлено его свойством проводить ток в одном направлении (ток насыщения очень мал).

В связи с применением выпрямительных диодов к их характеристикам и параметрам предъявляются следующие требования:

а) малый обратный ток ;

б) большое обратное напряжение;

в) большой прямой ток;

г) малое падение напряжения при протекании прямого тока.

Для того, чтобы обеспечить эти требования, выпрямительные диоды выполняются из полупроводниковых материалов с большой шириной запрещенной зоны, что уменьшает обратный ток, и большим удельным сопротивлением, что увеличивает допустимое обратное напряжение. Для получения в прямом направлении больших токов и малых падений напряжения следует увеличивать площадь p-n перехода и уменьшать толщину базы.

Выпрямительные диоды изготавливаются из германия (Ge) и кремния (Si) с большим удельным сопротивлением, причем Si является наиболее перспективным материалом.

Кремниевые диоды, в результате того, что Si имеет большую ширину запрещенной зоны [1] , имеют во много раз меньшие обратные токи, но большее прямое падение напряжения, т.е. при равной мощности отдаваемой в нагрузку, потеря энергии у кремниевых диодов будет больше. Кремниевые диоды имеют большие обратные напряжения и большие плотности тока в прямом направлении.

Зависимость вольтамперной характеристики кремниевого диода от температуры показана на рис.2.1.

Из рисунка 2.1 следует, что ход прямой ветви вольтамперных характеристик при изменении температуры изменяется незначительно. Это объясняется тем, что концентрация основных носителей заряда при изменении температуры практически почти не изменяется, т.к. примесные атомы ионизированы уже при комнатной температуре.

Количество неосновных носителей заряда определяется температурой и поэтому ход обратной ветви вольтамперной характеристики сильно зависит от температуры, причем эта зависимость резко выражена для гермениевых диодов. Величина напряжения пробоя тоже зависит от температуры. Эта зависимость определяется видом пробоя p-n перехода. При электрическом пробое за счет ударной ионизации возрастает при повышении температуры. Это объясняется тем, что при повышении температуры увеличиваются тепловые колебания решетки, уменьшается длина свободного пробега носителей заряда и для того, чтобы носитель заряда приобрел энергию достаточную для ионизации валентных связей, надо повысить напряженность поля, т.е. увеличить приложенное к p-n переходу обратное напряжение. При тепловом пробое при повышении температуры уменьшается.

В некотором интервале температур для германиевых диодов пробой чаще всего бывает тепловым (ширина запрещенной зоны Ge невелика), а для кремниевых диодов — электрическим. Это определяет значения при заданной температуре. При комнатной температуре значения для германиевых диодов обычно не превышают 400В , а для кремниевых — 1500В.

2.3 Высокочастотные полупроводниковые диоды.

В высокочастотных полупроводниковых диодах так же, как и в выпрямительных диодах, используется несимметричная проводимость p-n перехода.

Они работают на более высоких частотах, чем выпрямительные диоды (до сотен Мгц), и подразделяются на универсальные и импульсные. Универсальные в.ч. диоды применяются для получения высокочастотных колебаний тока одного направления, для получения из модулированных по амплитуде в.ч. колебаний — колебаний с частотой модуляции (детектирование), для преобразования частоты. Импульсные диоды применяются как переключающий элемент в импульсных схемах.

При работе ПД на высокой частоте большую роль играет емкость перехода, обусловливающая инерционность диода. Если диод включен в выпрямительную схему, то влияние емкости приводит к ухудшению процесса выпрямления

Кроме того, эффективность выпрямления снижается за счет того, что часть подведенного к p-n переходу внешнего напряжения падает на сопротивлении базы диода. Отсюда следует, что p-n переходы полупроводниковых диодов, работающих на высокой частоте должны обладать малой емкостью и малым сопротивлением базы .

Для уменьшения емкости уменьшают площадь перехода, а для уменьшения сопротивления базы уменьшают толщину базы.

Требование уменьшения инерционных свойств в.ч. диода и, в связи с этим уменьшение площади перехода, времени жизни неравновесных неосновных носителей заряда и толщины базы становится особенно важным в том случае, если диод работает в импульсной схеме в качестве переключателя. Переключатель имеет два состояния: открытое и закрытое. В идеальном случае переключатель должен иметь нулевое сопротивление в открытом состоянии, бесконечно большое — в закрытом, и мгновенно переходить из одного состояния в другое. В реальном случае при переключении в.ч. диода из закрытого состояния в открытое и обратно стационарное состояние устанавливается в течении некоторого времени, которое называется временем переключения и характеризует инерционные свойства диода. Наличие инерционных свойств при быстром переключении приводит к искажению формы переключаемых импульсов.

При изготовлении импульсных диодов в исходный полупроводник вводятся элементы, являющиеся эффективными центрами рекомбинации (Au, Cu, Ni ), что снижает время жизни неравновесных носителей заряда. Толщина n- области (базы) уменьшается до значений меньших, чем значение диффузионной длины пробега дырок . Это одновременно уменьшает и время жизни неравновесных носителей и сопротивление базы. Конструктивно в.ч. диоды выполняются в виде точечной конструкции или плоскостной с очень малой площадью перехода.

2.4 Туннельные диоды.

Туннельные диоды выполняются из полупроводников с большим количеством примесей (вырожденные полупроводники). Вольтамперная характеристика p-n перехода, выполненного на основе вырожденных полупроводников, имеет область с отрицательным сопротивлением, на котором при увеличении напряжения протекающий ток уменьшается. Элемент, обладающий отрицательным сопротивлением, не потребляет электрическую энергию, а отдает ее в цепь, т.е. является активным элементом цепи.

Наличие падающего участка вольтмаперной характеристики позволяет применять туннельные диоды в качестве генераторов и усилителей электрических колебаний широкого диапазона частот, включая СВЧ, и в качестве высокоскоростных переключателей.

Туннельные диоды выполняются из вырожденных полупроводников, главным образом из германия, кремния и арсенида галлия. Т.к. для туннельного перехода носителей сквозь потенциальный барьер p-n переход должен быть узким и резким, то p-n переходы туннельного диода изготавливают методом вплавления. Кроме того, применяется метод эпитаксильного наращивания вырожденных слоев, который также позволяет получить резкие переходы. Для уменьшения емкости (а, следовательно, для повышения верхней граничной частоты, на которой туннельный диод может работать как активный элемент с отрицательным сопротивлением) применяется метод получения p-n переходов малой площади.

Вольтамперная характеристика туннельного диода показана на рис.2.2. Ее вид зависит от концентрации примесей, от рода примесей при одном и том же значении концентрации и от температуры, причем зависимость от температуры различна для туннельных диодов, выполненных из разных материалов.

Основным параметром, характеризующим вольтамперную характеристику туннельного диода, является отрицательное дифференциальное сопротивление, характеризующее наклон падающего участка :

Т. к. туннельное прохождение электронов сквозь потенциальный барьер перехода не связано с медленным процессом диффузии, то время передачи туннельного тока очень велика (порядка сек для сильно легированного германия) и в туннельных диодах отсутствует инерционность за счет малой подвижности носителей. Поэтому частотные свойства туннельных диодов определяются не скоростью передачи тока, а только факторами, зависящими от конструкции: емкостью p-n перехода С, сопротивлением потерь , обусловленным объемным сопротивлением полупроводника и выводов, и суммарной индуктивностью диода . Частотные свойства туннельного диода характеризуются максимальной частотой

На частотах выше туннельный диод уже нельзя использовать в качестве отрицательного сопротивления, т.е. генерирование и усиление электрических колебаний на этих частотах невозможно. Кроме того, качество туннельного диода на высоких частотах оценивается отношением , которое иногда называется фактором добротности.

При работе туннельного диода в переключающих схемах его быстродействие характеризуется величиной времени переключения, зависящим и от свойств диода и от параметров схемы.

2.5 Стабилитроны

Обратная ветвь в/а характеристики, показанной на рис.2.3, т.е. явление пробоя p-n перехода, можно использовать для целей стабилизации напряжения, пользуясь тем обстоятельством, что до тех пор пока пробой носит электрический характер характеристика пробоя полностью обратима. Полупроводниковые диоды, служащие для стабилизации напряжения, называются стабилитронами.

Как видно из характеристики, в области пробоя незначительные изменения обратного напряжения приводят к резким изменениям величины обратного тока. Предположим, что диод, имеющий такую характеристику, включен в простейшую схему, показанную на рис.2.4, причем рабочая точка [2] находится в той области в/а характеристики, где при изменении тока напряжение практически остается постоянным.

В этом случае, если изменяется входное напряжение U, то изменяется ток в цепи, но т.к. напряжение на диоде при изменении тока остается постоянным (изменяется сопротивление диода), то и напряжение в точках а,б — постоянно. Если параллельно к диоду к точкам а,б подключить сопротивление нагрузки, то напряжение на нагрузке тоже не изменится.

Стабилитроны изготовляются из кремния. Это связано с тем, что в стабилитронах может быть использована только электрическая форма пробоя, которая является обратимой. Если пробой перейдет в необратимую тепловую форму, то прибор выйдет из строя. Поэтому величина обратного тока в стабилитронах ограничена допустимой мощностью рассеивания.

Т.к. ширина запрещенной зоны кремния больше, чем у германия, то для него электрическая форма пробоя перейдет в тепловую при больших значениях обратного тока — отсюда целесообразность выполнения стабилитронов из кремния. Степень легирования кремния, т.е. величина его удельного сопротивления , зависит от величины стабилизируемого напряжения, на которое изготовляется диод. Стабилитроны для стабилизации низких напряжений изготовляются из кремния с малым удельным сопротивлением; чем выше стабилизируемое напряжение, тем из более высокоомного материала выполняется диод. Изменение стабилизируемого напряжения от нескольких вольт до десятков вольт может быть достигнуто изменением удельного сопротивления кремния.

Основным параметром стабилитронов является напряжение стабилизации и температурный коэффициент напряжения ТКН, характеризующий изменение напряжения на стабилитроне при изменении температуры на , при постоянном токе.

ТКН может принимать как положительные, так и отрицательные значения в зависимости от влияния температуры на напряжение пробоя . Для низковольтных стабилитронов, которые выполняются из низкоомных полупроводников, пробой имеет туннельный характер, а т.к. вероятность туннельного перехода электронов возрастает с увеличением температуры, т.е. падает, то низковольтные стабилитроны имеют отрицательный ТКН. В p-n переходах высоковольтных стабилитронов, которые выполняются из высокоомных полупроводников, происходит пробой за счет ударной ионизации и U пробоя растет с повышением температуры, т.к. тепловые колебания решетки уменьшают длину свободного пробега носителей заряда и для того, чтобы они приобрели кинетическую энергию, нужную для ионизации валентных связей, надо повысить напряженность поля перехода.

Для высокоомных стабилитронов ТКН — положителен.

где U— напряжение на диоде,

T— температура.

2.6 Варикапы.

Действие варикапов основано на использовании емкостных свойств р-п перехода.

Обычно используется зависимость величины барьерной емкости от напряжения в области обратных напряжений. В общем виде зависимость величины зарядной емкости от напряжения имеет вид;

где А — постоянная,

— высота потенциального барьера,

U — внешнее напряжение,

— для резких переходов,

— для плавных переходов.

Эта зависимость изображена на рис.2.5, где сплошной линией показана характеристика плавного перехода, а пунктирной — резкого перехода.

Варикапы могут быть использованы для различных целей как конденсаторы с переменной емкостью. Иногда их используют в параметрических усилителях. В принципе работы параметрического усилителя лежит частичная компенсация потерь в колебательном контуре, состоящем из катушки индуктивности L и конденсатора C, при периодическом изменении емкости конденсатора или индуктивности катушки (при условии, что изменение будет происходить в определенных количественных и фазовых соотношениях с частотой колебаний контура). В этом случае увеличение мощности электрических колебаний (сигнала) происходит за счет энергии того источника, который будет периодически изменять величину реактивного параметра. В качестве такого переменного реактивного параметра и используется варикап, емкость которого меняется в результате воздействия гармонического напряжения подаваемого от специального генератора накачки. Если с помощью варикапа и генератора накачки полностью скомпенсировать все потери контура, т.е. довести его до состояния самовозбуждения, то такая система носит название параметрического генератора.

Очевидно, что в качестве управляемой емкости может работать любой полупроводниковый диод, при условии, что величина его зарядной емкости достаточно велика. К специальным параметрическим диодам, работающим в параметрических усилителях на высоких и сверхвысоких частотах, предъявляются повышенные требования : они должны обладать сильной зависимостью емкости от напряжения и малым значением сопротивлением базы для повышения максимальной рабочей частоты.

[2] рабочей точкой называется точка на характеристике прибора, определяющая постоянное значение тока, протекающего через прибор, и постоянное значение напряжения

Сайт ориентирован на работу в INTERNET EXPLORER 4.0 и выше.
Разрешение 800х600 и больше. Используйте кнопку F11

©, Центр телекоммуникационных технологий, авторы, 2002
webmasters: Р.Романов Г.Сидоров e-mail: physics@tspu.tula.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *