От чего зависит разрядность шины данных
Перейти к содержимому

От чего зависит разрядность шины данных

  • автор:

От чего зависит разрядность шины данных

Разрядность шины — это число бит данных, которое может быть передано за один цикл. Производительность памяти можно характеризовать как объем данных, переданных за единицу времени. Она напрямую зависит от частоты работы памяти и от разрядности шины.

Остальные ответы

От самой шины

Похожие вопросы

Ваш браузер устарел

Мы постоянно добавляем новый функционал в основной интерфейс проекта. К сожалению, старые браузеры не в состоянии качественно работать с современными программными продуктами. Для корректной работы используйте последние версии браузеров Chrome, Mozilla Firefox, Opera, Microsoft Edge или установите браузер Atom.

B.2. Разрядность процессора.

Важным свойством микропроцессора является разрядность его шины данных и адреса. Выясним, почему это так.

Важнейшим параметром, определяющим скорость работы любого процессора, является тактовая частота. Она представляет собой импульсы прямоугольной формы, с которой синхронизируются все операции процессора. По другому тактовая частота называется частотой синхроимпульсов. Тактовой же частотой она называется потому, что любая операция в процессоре не может быть выполнена быстрее, чем за один такт (период) синхроимпульсов.

С объединением элементов процессора в один кристалл наиболее узким местом в производительности процессора стала не пересылка данных между элементами процессора, а скорость обмена данными между процессором и остальными устройствами по шине. Поскольку любая операция, в том числе и пересылка данных, не может происходить быстрее, чем за такт, логично предположить. что желательно передавать как можно больше информации за один такт. Так как единицей информации является один бит (двоичный разряд), то, чем больше передается разрядов за один такт (по шине данных), тем быстрее работает процессор.

С разрядностью шины адреса немного сложнее. Дело в том, что вся адресуемая память компьютера пронумерована побайтно. Поэтому для обращения процессора к памяти ему необходимо запросить адрес нужных данных по адресной шине. Разрядность шины адреса определяет максимальный номер байта, который может быть затребован процессором. Так, при 8-ми разрядной шине возможна адресация 256 байт, при 16-ти разрядной – 64 Кбайт, а при 32-х разрядной – 4 Гбайт.

Между шиной адреса и шиной данных есть эмпирическое соотношение: чем больше процессор должен адресовать памяти (т.е. чем больше разрядность шины адреса), тем быстрее они должны поступать в процессор. Следовательно, тем шире шина данных. Однако на разрядность шин накладывается технологическое ограничение: чем шире шина, тем сложнее сделать его компоненты (как со «стороны» процессора, так и периферии.) Поэтому в современных универсальных микропроцессорах ШАШ ~ 0.5 – 2.0 ШШД.

Примечание: ШАШ – ширина адресной шины, ШШД – ширина шины данных).

Copyright © Юрий А. Денисов. 2000-2002 г.

В настоящее время проект закрыт (в версии 1.00.3 alpha). Автор приносит извинения за прекрашение разработки.

От чего зависит разрядность шины данных

Тема: Архитектура персонального компьютера.

1. Магистрально-модульный принцип построения компьютера.

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистраль (системная шина) включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления , которые представляют собой многопроводные линии (рис. 3). К магистрали подключаются процессор и оперативная память, а также периферийные устройства ввода, вывода и хранения информации, которые обмениваются информацией на машинном языке (последовательностями нулей и единиц в форме электрических импульсов).

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.Разрядность шины данных определяется разрядностью процессора, то есть количеством двоичных разрядов, которые могут обрабатываться или передаваться процессором одновременно. Разрядность процессоров постоянно увеличивается по мере развития компьютерной техники. style=’FONT-SIZE: 12pt; FONT-FAMILY: «Times New Roman»,serif; COLOR: black; LINE-HEIGHT: 150%; mso-fareast-font-family: «Times New Roman»; mso-fareast-language: RU’>

Рис. 3. Магистрально-модульное устройство компьютера

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении — от процессора к оперативной памяти и устройствам (однонаправленная шина). Разрядность шины адреса определяет объем адресуемой памяти (адресное пространство), то есть количество однобайтовых ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле:

N = 2 I , где I — разрядность шины адреса.

Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 36 бит. Таким образом, максимально возможное количество адресуемых ячеек памяти равно:

N = 2 36 = 68 719 476 736.

Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления показывают, какую операцию — считывание или запись информации из памяти — нужно производить, синхронизируют обмен информацией между устройствами и так далее.

Системная шина , другими словами магистраль, позволяет осуществлять взаимодействие между процессором и остальными компонентами компьютера. По этой шине осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами. Системная шина физически представляет собой набор проводников, объединяющих основные узлы системной платы. От типа системной шины, так же как и от типа процессора, зависит скорость обработки информации персональным компьютером. Основной характеристикой этих линий является частота и разрядность.

Число одновременно передаваемых по шине адреса и шине данных раз рядов (битов) определяет разрядность соответствующей шины. От разрядности шины данных зависит максимально возможное общее количество доступной памяти (адресное пространство процессора), а разрядность шины данных влияет на максимальную порцию информации, которую можно получить из памяти за один раз. Для процессора i8088, разрядность адресной шины равнялась 20 и, соответственно, максимальное количество доступной памяти составляло 1 Мбайт. Современные процессоры Pentium могут адресовать до 1 Гбайта памяти. Следует заметить, что в компьютере, как правило, объем оперативной памяти меньше, чем максимально возможный для процессора.

Современный компьютер имеет системную шину 32 и 64 бита. Такая разрядность шины данных позволяет значительно повысить скорость обмена информацией, а увеличение разрядности адресной шины обеспечивает возможность обращения к большему объему оперативной памяти. Системная шина включает в себя: шину данных, адресную шину и шину управления. Каждая часть предназначена для передачи определенных сигналов.

2. Основные и периферийные устройства компьютера: виды, основные характеристики.

Архитектура – это наиболее общие принципы построения ЭВМ, реализующие программное управление работой и взаимодействием основных ее функциональных частей.

Основные блоки ПК : Системный блок, монитор, клавиатура, мышь

Внутренние устройства ПК : Процессор, материнская плата, оперативная память, жесткий диск, дисковод гибких дисков, дисковод компакт-дисков, видеокарта, звуковая карта, шины

Важными техническими характеристиками, влияющими на производительность компьютера, являются показатели частоты процессора, разрядность и машинное слово.

Количество разрядов, которое может быть воспринято, передано или получено за одно обращение к процессору, называется его разрядностью .

Количество информации, записываемое или извлекаемое из памяти за одно обращение, называется машинным словом .

Периферийные устройства ПК : Принтер, сканер, плоттер, графопостроитель, модем, источник бесперебойного питания (UPS), колонки, микрофон.

Создание персонального компьютера можно отнести к одному из самых значительных изобретений 20 века. ПК существенно изменил роль и значение вычислительной техники в жизни человека. Современные ЭВМ бывают самыми разными: от больших, занимающих целый зал, до маленьких, помещающихся на столе, в портфеле и даже в кармане. Сегодня самым массовым видом ЭВМ являются персональные компьютеры.

Вот далеко не полный список использования компьютера: подготовка текстовых документов, графических изображений, электронная почта, обучение, подготовка к изданию рекламных листков, журналов, газет и книг, организация бухгалтерского учета и учета материальных ценностей, подготовка рекламных роликов и демонстрационных программ, математические расчеты, создание и исполнение музыкальных произведений, игры и развлечения.

Но для нормальной работы необходимо чётко и ясно представлять, из чего компьютер состоит.

Составные части, из которых состоит компьютер, называют модулями. Среди всех модулей выделяют основные модули, без которых работа компьютера невозможна, и остальные модули, которые используются для решения различных задач: ввода и вывода графической информации, подключения к компьютерной сети и т.д.

Персональные компьютеры обычно состоят из следующих основных модулей:

В системном блоке находятся все основные узлы компьютера:

• электронные схемы (процессор, контроллеры устройств и т.д.);

Характеристики основных модулей ПК

Материнская (системная, главная) плата является центральной частью любого компьютера. На материнской плате размещаются в общем случае центральный процессор, сопроцессор, контроллеры, обеспечивающие связь центрального процессора с периферийными устройствами, оперативная память, кэш-память, элемент ROM-BIOS, аккумуляторная батарея, кварцевый генератор тактовой частоты и слоты для подключения других устройств.

Общая производительность материнской платы определяется не только тактовой частотой , но и количеством данных , обрабатываемых в единицу времени центральным процессором, а также разрядностью шины обмена данных между различными устройствами материнской платы.

Порт — многоразрядный вход или выход в устройстве.

В общем случае под процессором понимают устройство, производящее набор операций над данными, представленными в цифровой форме. Применительно к вычислительной технике под процессором понимают центральное процессорное устройство , обладающее способностью выбирать, декодировать и выполнять команды, а также передавать и принимать информацию от других устройств.

Производство современных персональных компьютеров начались тогда, когда процессор был выполнен в виде отдельной микросхемы.

1.обработка данных по заданной программе — функция АЛУ;

2.программное управление работой устройств ЭВМ — функция УУ (устройства управления).

В состав процессора входят также регистры — ряд специальных запоминающих ячеек.

Регистры выполняют две функции:

• кратковременное хранение числа или команды;

• выполнение над ними некоторых операций.

Производительность CPU характеризуется следующими основными параметрами:

1. тактовой частотой;

2. степенью интеграции;

3. внутренней и внешней разрядностью обрабатываемых данных;

4. памятью, к которой может адресоваться CPU.

Тактовая частота указывает, сколько элементарных операций микропроцессор выполняет за одну секунду. Тактовая частота определяет быстродействие процессора.

Степень интеграции микросхемы показывает, сколько транзисторов может поместиться на единице площади. Для процессора Pentium Intel эта величина составляет приблизительно 3 млн. на 3,5 кв.см, у Pentium Pro — 5 млн.

Внутренняя разрядность процессора определяет, какое количество битов он может обрабатывать одновременно при выполнении арифметических операций. Внешняя разрядность процессора определяет, сколько битов одновременно он может принимать или передавать во внешние устройства.

Для процессора различают внутреннюю тактовую частоту процессора и внешнюю . Количество адресов ОЗУ, доступное процессору, определяется разрядностью адресной шины.

Центральный процессор имеет доступ к данным, находящимся в оперативной памяти. Работа компьютера с пользовательскими программами начинается после того как данные будут считаны из внешней памяти в ОЗУ.

ОЗУ работает синхронно с центральным процессором и имеет малое время доступа. Оперативная память сохраняет данные только при включенном питании. Отключение питания приводит к необратимой потере данных, поэтому пользователю, работающему с большими массивами данных в течение длительного времени, рекомендуют периодически сохранять промежуточные результаты на внешнем носителе.

• приём информации от других устройств;

• передача информации по запросу в другие устройства машины.

Память делят на:

ОЗУ (оперативно запоминающее устройство);

ПЗУ (постоянное запоминающее устройство);

Носители внешней памяти: жесткие и гибкие магнитные диски, а также лазерные диски (CD). Прежде, чем использовать, диски форматируют на дорожки и секторы.

К функциям периферийных устройств относятся ввод и вывод информации.

Каждое устройство имеет набор характеристик, которые позволяют подобрать такую конфигурацию устройств, которая наилучшим образом подходит для решения определенного круга задач с помощью компьютера.

По способу реализации оперативная память делится на динамическую и статическую.

Оперативная память бывает: SIMM и DIMM.

Кэш-память. Кэш-память предназначена для согласования скорости работы сравнительно медленных устройств, таких, например как динамическая память с быстрым микропроцессором. Использование кэш-памяти позволяет избежать циклов ожидания в его работе, которые снижают производительность всей системы.

С помощью кэш-памяти обычно делается попытка согласовать также работу внешних устройств, например, различных накопителей, и микропроцессора. Соответствующий контролер кэш-памяти должен заботиться о том, чтобы команды и данные, которые будут необходимы микропроцессору в определенный момент времени, именно к этому моменту оказывались в кэш-памяти.

Назначение и группы периферийных устройств.

Основное назначение ПУ — обеспечить поступление в ПК из окружающей среды программ и данных для обработки, а также выдачу результатов работы ПК в виде, пригодном для восприятия человека или для передачи на другую ЭВМ, или в иной, необходимой форме. ПУ в немалой степени определяют возможности применения ПК.

Периферийные устройства можно разделить на несколько групп по функциональному назначению:

1. Устройства ввода-вывода — предназначены для ввода информации в ПК, вывода в необходимом для оператора формате или обмена информацией с другими ПК. К такому типу ПУ можно отнести внешние накопители, модемы.

2. Устройства вывода — предназначены для вывода информации в необходимом для оператора формате. К этому типу периферийных устройств относятся: принтер, монитор, аудиосистема.

3. Устройства ввода — Устройствами ввода являются устройства, посредством которых можно ввести информацию в компьютер. Главное их предназначение — реализовывать воздействие на машину. К такому виду периферийных устройств относятся: клавиатура, сканер, графический планшет и т.д.

4. Дополнительные ПУ — такие как манипулятор “мышь”, который лишь обеспечивает удобное управление графическим интерфейсом операционных систем ПК и не несет ярковыраженных функций ввода либо вывода информации; WEB-камеры, способствующие передаче видео и аудио информации в сети Internet, либо между другими ПК. Последние, правда, можно отнести и к устройствам ввода, благодаря возможности сохранения фото, видео и аудио информации на магнитных или магнитооптических носителях.

Каждые из перечисленных групп устройств выполняют определенные функции, ограниченные их возможностями и назначением.

Периферийные устройства ввода-вывода информации.

Периферийные устройства ввода-вывода бывают нескольких видов в зависимости от назначения.

Винчестеры или накопители на жестких дисках — это внешняя память большого объема, предназначенная для долговременного хранения информации, объединяющая в одном корпусе сам носитель информации и устройство записи/чтения. По сравнению с дисководами винчестеры обладают рядом очень ценных преимуществ: объем хранимых данных неизмеримо больше, время доступа у винчестера на порядок меньше. Единственный недостаток: они не предназначены для обмена информацией.

Физические размеры винчестеров стандартизированы параметром, который называют форм-фактором.

Винчестер состоит из не скольких жестких дисков, с нанесенным на поверхность магнитным слоем и расположенных друг под другом. Каждому диску соответствует пара головок записи/чтения. При включенном компьютере диски винчестера постоянно крутятся, даже когда нет обращения к винчестеру, таким образом, экономится время на его разгон.

К настоящему времени разработаны следующие типы винчестеров: MFM, RLL, ESDI, IDE, SCSI.

· Ленточные (магнитные) накопители — стримеры. Благодаря достаточно большому объему и довольно высокой надежности чаще всего используются в рамках устройств резервного копирования данных на предприятиях и в крупных компаниях.

· Магнитооптические накопители — приводы CD-ROM, CD-R, CD-RW, DVD-R, DVD-RW. Также могут использоваться в качестве устройств резервного копирования, но, в отличие от стримеров, обладают гораздо меньшей вместимостью данных.

Пятнадцать лет назад компания Toshiba придумала технологию энергонезависимой полупроводниковой памяти, которую она назвала флэш-памятью. Флэш-память позволяет записывать и стирать данные без таких сложностей, благодаря чему обладает неплохим быстродействием и, к тому же, достаточно надежна.

Вскоре чипы флэш-памяти стали встраивать в различные устройства, а на их основе были созданы флэш-карты, с помощью которых можно было транспортировать различные данные.

В настоящее время существуют два вида модемов: аналоговые и цифровые.

Аналоговые модемы более популярны из-за своей дешевизны и используются в основном для выхода в сеть Internet, и только иногда для связи с другими ПК. Цифровые же модемы довольно дорогие и используются для высокоскоростных соединений с сетью Internet, либо для организации локальной сети на больших расстояниях. Модемы имеют несколько типов соединений с ПК: COM, USB или посредством сетевой карты. Модем, соединение которого идет через COM-порт, требует дополнительного источника питания, а при соединении при помощи USB-порта потребность в блоке питания отпадает. xDSL-модемы также требуют дополнительного источника питания.

Периферийные устройства вывода информации.

Периферийные устройства вывода предназначены для вывода информации в необходимом для оператора формате. Среди них есть обязательные и необязательные устройства.

Монитор является необходимым устройством вывода информации. Монитор позволяет вывести на экран алфавитно-цифровую или графическую информацию в удобном для чтения и контроля пользователем виде. В соответствии с этим, существует два режима работы: текстовой и графический. В текстовом режиме экран представлен в виде строк и столбцов. В графическом формате параметры экрана задаются числом точек по горизонтали и числом точечных строк по вертикали. Количество горизонтальных и вертикальных линий экрана называется разрешением. Чем оно выше, тем больше информации можно отобразить на единице площади экрана.

· Цифровые мониторы . Самый простой — монохромный монитор позволяет отображать только черно-белое изображение. Цифровые RGB — мониторы поддерживают и монохромной режим, и цветной.

· Аналоговые мониторы . Аналоговая передача сигналов производится в виде различных уровней напряжения. Это позволяет формировать палитру с оттенками разной степени глубины.

· Мультичастотные мониторы . Видеокарта формируем сигналы синхронизации, которые относятся к горизонтальной частоте строк и вертикальной частоте повторения кадров. Эти значения монитор должен распознавать и переходить в соответствующий режим.

По возможности настройки можно выделить: одночастотные мониторы, которые воспринимают сигналы только одной фиксированной частоты; многочастотные, которые воспринимают несколько фиксированных частот; мультичастотные, настраивающиеся на произвольные значения частот синхроносигналов в некотором диапазоне.

· Жидкокристаллические дисплеи (LCD) . Основной из недостаток — невозможность быстрого изменения картинок или быстрого движения курсора мыши и т.п. Такие экраны нуждаются в дополнительной подсветке или во внешнем освещении. Преимущества данных экранов — в значительном сокращении спектра вредных воздействий.

· Газоплазменные мониторы . Не имеют ограничений LCD -экранов. Их недостаток — большое потребление электроэнергии.

Особо надо выделить группу сенсорных экранов , так как они позволяют не только выводить на экран данные, но и вводить их, то есть попадают в класс устройств ввода/вывода. Такие экраны обеспечивают самый простой и короткий путь общения с компьютером: достаточно просто указать на то, что вас интересует. Устройство ввода полностью интегрировано в монитор.

Пользователи ПК проводят в непосредственной близости от работающих мониторов многие часы подряд. В связи с этим фирмы-производители дисплеев усилили внимание к оснащению их специальными средствами защиты от всех видов воздействий, которые негативно сказываются на здоровье пользователя. В настоящее время распространяются мониторы с низким уровнем излучения. Используются и другие методы, повышающие комфортность работы с дисплеями.

Принтер это широко распространенное устройство вывода информации на бумагу, его название образовано от английского глагола to print — печатать. Принтер не входит в базовую конфигурацию ПК. Существуют различные типы принтеров:

· Типовой принтер работает аналогично электрической печатающей машинке. Достоинства: четкое изображение символов, возможность изменения шрифтов при замене типового диска. Недостатки: шум при печати, низкая скорость печати, невозможна печать графического изображения.

· Матричные (игольчатые) принтеры — это самые дешевые аппараты, обеспечивающие удовлетворительное качество печати для широкого круга рутинных операций. Достоинства: приемлемое качество печати при условии хорошей красящей ленты, возможности печати «под копирку». Недостатки: достаточно низкая скорость печати, особенно графических изображений, значительный уровень шума.

· Струйные принтеры обеспечивают более высокое качество печати. Они особенно удобны для вывода цветных графических изображений. Применение чернил разного цвета дает сравнительно недорогое изображение приемлемого качества.

Струйные принтеры значительно меньше шумят. Скорость печати зависит от качества. Этот тип принтера занимает промежуточное накопление между матричными и лазерными принтерами.

· Лазерные принтеры — имеют еще более высокое качество печати, приближенное к фотографическому. Они стоят намного дороже, однако скорость печати в 4-5 раз выше, чем у матричных и струйных принтеров. Недостатком лазерных принтеров являются довольно жесткие требования к качеству бумаги — она должна быть достаточно плотной и не должна быть рыхлой, недопустима печать на бумаге с пластиковым покрытием и т.д.

Лазерные принтера делятся на два типа: локальные и сетевые. К сетевым принтерам можно подключится, используя IP адрес.

· Светодиодные принтеры — альтернатива лазерным.

Термические принтеры используются для получения цветного изображения фотографического качества. Требуют особой бумаги. Такие принтеры пригодны для деловой графики.

Намного дешевле лазерных и струйных принтеров. Печатает на любой бумаге и картоне. Принтер работает с низким уровнем шума.

Это устройство применяется только в определенных областях: чертежи, схемы, графики, диаграммы и т.п. Незаменимы плоттеры и при разработках архитектурных проектов.

Поле черчения плоттера соответствует форматам А0-А4, хотя есть устройства, работающие с рулоном не ограничивающие длину выводимого чертежа. То есть различают планшетные и барабанные плоттеры.

· Планшетные плоттеры , в основном для форматов А2-А3, фиксируют лист и наносят чертеж с помощью пишущего узла, перемещающегося в двух координатах. Они обеспечивают более высокую по сравнению с барабанным точность печати рисунков и графиков.

· Рулонный (барабанный) плоттер — остается фактически единственным развивающимся видом плоттера с роликовой подачей листа и пишущим узлом, перемещающимся по одной координате.

Распространены режущие плоттеры для вывода чертежа на пленку, вместо пишущего узла они имеют резак.

Связь с компьютером плоттеры, как правило, осуществляют через последовательный, параллельный или SCSI-интерфейс. Некоторые модели графопостроителей оснащаются встроенным буфером.

В плоттерах могут использоваться как специальные технологии, так и технологии, хорошо знакомые по принтерам. В настоящее время струйные устройства получают все большее распространение.

Мультимедиа-проектор позволяет воспроизводить на большом экране информацию, получаемую от самых разнообразных источников сигнала: компьютера, видеомагнитофона, видеокамеры, фотокамеры, игровой приставки. Современный проектор — наиболее совершенное звено в цепи эволюции проекционного оборудования.

Мультимедиа-проектор — современное и высокотехнологичное устройство. Надежность большинства выпускаемых моделей велика, и пользователю вряд ли придется обращаться в сервисный центр с просьбой о ремонте. Единственная заменяемая деталь проектора — его лампа. В большинстве проекторов используются дуговые лампы с высокой яркостью и более ровным по сравнению с лампами накаливания спектром. Средний срок их службы — 2000 часов работы. Иногда бывает полезно применять функцию экономного режима работы лампы, вдвое продлевающего ее ресурс.

В персональных компьютерах применяются самые разнообразные схемы формирования звуковых сигналов — от простых до сложных.

В наши дни на рынке очень много акустических систем, состоящих из двух активных колонок, и выполненных по системе 2.1. Подобные системы в народе называются “пищалками”, потому что не способны обеспечить звук высокого качества даже на низком уровне громкости.

Совсем недавно идеалом в мире компьютерных акустических систем была система 5.1, но в последнее время производители акустики расширяют возможности своих систем, что привело сначала к появлению системы 6.1, а позднее и 8.1

Периферийные устройства ввода информации.

Устройствами ввода являются те устройства, посредством которых можно ввести информацию в компьютер. Главное их предназначение — реализовывать воздействие на ПК. Разнообразие выпускаемых устройств ввода породили целые технологии: от осязаемых до голосовых.

Главным устройством ввода большинства компьютерных систем является клавиатура . До недавнего времени использовалась стандартная клавиатура, 101/102 клавиши, но с развитием персональных компьютеров производители старались развивать и основное устройство ввода информации. Это и привело к созданию мультимедийных клавиатур, которые в наши дни все больше и больше набирают популярность.

К дополнительным клавишам относятся группы клавиш управления мультимедийными приложениями, клавиши управления громкостью системы, группа клавиш для быстрого вызова офисных приложений, калькулятора, Internet Explorer и т.д.

Клавиатуры различаются по двум признакам: способ подключения и дизайн. Подключение клавиатуры к компьютеру может осуществляться через порт PS/2, USB и через ИК порт для беспроводных моделей. В последнем способе подключения клавиатура требует дополнительного источника питания, например, батарейки.

Для непосредственного считывания графической информации с бумажного или иного носителя в ПК применяется оптические сканеры . Сканируемое изображение считывается и преобразуется в цифровую форму элементами специального устройства: CCD — чипами. Существует множество видов и моделей сканеров.

Ручные сканеры — самые простые и дешевые. Основной недостаток в том, что человек сам перемещает сканер по объекту, и качество полученного изображения зависит от умения и твердости руки. Другой важный недостаток — небольшая ширина полосы

· Барабанные сканеры применяются в профессиональной типографической деятельности.

· Листовые сканеры . Их основное отличие от двух предыдущих в том, что при сканировании неподвижно закреплена линейка с CCD — элементами, а лист со сканируемым изображением движется относительно нее с помощью специальных валиков.

· Планшетные сканеры . Это самый распространенный сейчас вид для профессиональных работ. Сканируемый объект помещается на стеклянный лист, изображение построчно с равномерной скоростью считывается головкой чтения с CCD — сенсорами, расположенной снизу.

· Проекционные сканеры . Цветной проекционный сканер является мощным многофункциональным средством для ввода в компьютер любых цветных изображений, включая трехмерные.

Интерфейс может быть разным:

· Собственный интерфейс — сканер поставляется со своей уникальной картой и работает только с ней.

· SCSI — если использовать сканер не с поставляемой в комплекте картой, то лёгкая совместимость получается не всегда.

· LPT — сканеру может быть необходима поддержка портом одного из скоростных протоколов. Если EPP обычно есть всегда, то необходимый для сканеров Epson вариант 8-бит Bi-Directional реализован не везде.

· USB — самый распространенный вариант подключения на сегодняшний день.

Настольные компьютеры для конструкторских и дизайнерских работ уже более десяти лет комплектуются графическими планшетами. Это устройство значительно упрощает ввод в ПК чертежей, схем и рисунков. Сначала планшеты были дорогими приспособлениями и поэтому были рассчитаны на сугубо профессиональное использование. Но уже лет пять выпускаются дешевые домашние модели.

Дополнительные периферийные устройства.

В настоящее время существуют два типа манипуляторов:

· Мышь — с развитием операционных систем с графическим интерфейсом этот манипулятор стал просто “незаменимой” частью персонального компьютера. Манипулятор “мышь” обеспечивает простое и удобное управление многими функциями ОС и прикладных программ.

Мыши различаются по трем характеристикам — числу кнопок, используемой технологии и типу соединения устройства с системным блоком. В первоначальной форме в устройстве была одна кнопка. Перебор функций определяется перемещением мыши, но выбор функции происходит только при помощи кнопки, что позволяет избежать случайного запуска задачи при переборе функций меню. Однако две кнопки увеличивают гибкость системы. Вне всяких сомнений, три кнопки еще более увеличат гибкость управления. Но, с другой стороны, увеличение кнопок увеличивает сходство устройства с клавиатурой, возвращая ему недостатки последней. Практически три кнопки являются разумным пределом, потому что они позволяют лежать указательному, среднему, безымянному пальцам на кнопках, в то время как большой и мизинец используются для перемещения мыши и удержании ее в ладони.

Большинство моделей снабжаются двумя кнопками, но с появлением манипуляторов со “скролом” двухкнопочные мыши постепенно уходят в тень, так как “скрол” одновременно выполняет сразу две функции: может использоваться в качестве третьей кнопки, и очень удобен для прокрутки документов.

Существуют “мыши” двух видов: шариковые и оптические. В шариковых манипуляторах используется механический способ передачи направления. В оптических “мышах” вместо шарика используется светодиод.

Манипулятор “мышь” имеет несколько типов подключения: COM, PS/2, USB, ИК.

“Мыши” с типом подключения при помощи COM-порта — одни из первых манипуляторов. В основном снабжались двумя кнопками. PS/2 — манипуляторы широко используются и сейчас, несмотря на бурно развивающиеся другие типы соединений. USB и ИК соединения используется, в основном, для оптических манипуляторов. В отличие от всех других типов соединений мыши, использующие инфракрасный порт нуждаются в дополнительном источнике питания. Обычно используются батарейки.

· Джойстик — представляет собой подвижную рукоять (или руль) с несколькими кнопками. Это устройство ввода наиболее распространено в области компьютерных игр. В игровых приставках используются цифровые джойстики, а в компьютерах — аналоговые. Аналоговый джойстик имеет перед цифровым множество преимуществ. Самыми главными являются более широкая точность управления и отсутствие необходимости в применении специальной карты и переходника для подключения к компьютеру.

В настоящее время существует большое количество профессиональных цифровых систем видеонаблюдения, решающих разные задачи и соответственно имеющих различные возможности и цену. Можно настроить камеру так, чтобы ПК подавал звуковой сигнал при движении объекта в кадре. Видеоизображение также можно транслировать в сеть Internet.

При отсутствии локальной сети web-камера может подключаться непосредственно к компьютеру, а удаленный доступ к ней в режиме входящих/исходящих звонков может осуществляться через внешний модем. Подключение web-камеры к компьютеру или модему осуществляется через разъем RS-232.

Стремительное развитие беспроводных технологий послужило толчком к созданию целого семейства беспроводных Web-камер. Многие современные Web-камеры имеют схожие характеристики и отличаются, в основном, только дизайном и комплектацией поставки.

Аналогичным образом можно организовать видеоконференцию с группой удаленных от вас людей.

Шина данных. разрядность шины

Информатика, информационные технологии

Шину данных образуют линии, служащие для передачи данных между отдельными структурными группами ПК. Исходным пунктом линий данных является центральный процессор. Он определяет разрядность шины данных, т.е. число линий, по которым передаются данные. Чем выше разрядность шины данных, тем больший объем данных можно передать по ней за некоторый определенный промежуток времени и тем выше быстродействие компьютера.

В первых ПК использовался процессор Intel 8088. Этот 16-разрядный процессор имел всего лишь 8 внешних линий данных (этим объясняется его низкая стоимость). Для внутренних операций было задействовано 16 линий данных, благодаря чему процессор мог одновременно обрабатывать два восьмиразрядных числа. Но на внешнем уровне к нему присоединялась дешевая восьмиразрядная шина данных. Эти 8 линий обеспечивали связь со всеми микросхемами на системной плате, выполняющими функции обработки данных, и всеми платами расширения, установленными в гнездах. Таким образом осуществлялась передача данных между платами расширения и процессором.

Современные процессоры допускают внешнее подключение большего числа линий данных: процессор 80286 — 16 линий данных, процессоры 80386 DX и 80486 DX — 32 линии, а процессор Pentium — 64 линии данных.

Адресная шина. Разрядность шины

Другая группа линий образует адресную шину. Эта шина используется для адресации. Каждая ячейка памяти и устройство ввода-вывода компьютера имеет свой собственный адрес.

При считывании или записи данных процессор должен сообщать, по какому адресу он желает прочитать или записать данные, для чего необходимо указать этот адрес.

В отличие от шины данных шина адреса является однонаправленной.

Разрядность адресной шины определяет максимальное число адресов, по которым может обратиться процессор, т. е. число линий в адресной шине показывает, каким объемом памяти может управлять процессор. Учитывая, что одна адресная линия обеспечивает представление одного разряда двоичного числа, формулу для максимального объема адресуемой памяти можно записать в следующем виде:

максимальное число адресов = 2n,

где n — разрядность адресной шины.

Процессор 8088 имел 20 адресных линий, что в соответствии с приведенной формулой обеспечивало адресацию памяти объемом:

220 =1 048 576 байт = 1024 Кбайт = 1 Мбайт.

Это тот самый предельный объем памяти, который все еще имеет силу в операционной системе DOS.

Совсем иная ситуация с процессором 80286. Он имеет 24 адресных линии и поэтому в состоянии управлять памятью объемом:

224= 16 777 216 байт =16 Мбайт.

Для обеспечения связи с микросхемами памяти число адресных линий процессора должно равняться числу адресных линий на системной плате.

Процессоры 80386, 80486 и Pentium имеют 32 адресных линии, что обеспечивает адресацию свыше 4 млрд. ячеек памяти. На системной плате с такими процессорами должно быть 32 линии, обеспечивающие обмен адресами между центральным процессором и всеми важными периферийными микросхемами.

Линии шины управления на системной плате служат для управления различными компонентами ПК. По выполняемой ими функции их можно сравнить с переводной стрелкой на железнодорожных путях.

С помощью небольшого числа линий шина управления обеспечивает такое функционирование системы, чтобы в каждый данный момент времени только одна структурная единица ПК пересылала данные по шине данных или осуществляла адресацию памяти.

К шине может быть подключено много приемных устройств. Сочетание управляющих и адресных сигналов определяет, для кого именно предназначаются данные на шине. Управляющая логика возбуждает специальные стробирующие сигналы, чтобы указать получателю, когда ему следует принимать данные.

Управляющая логика активизирует в каждый конкретный момент только одно устройство, которое становиться ведущим. Когда устройство активизировано, оно помещает свои данные на шину. Все другие микросхемы в этот промежуток времени должны блокироваться с помощью соответствующего сигнала на линии управления.

Микропроцессор взаимодействует с внешней средой с помощью шины адреса/данных/состояния и нескольких управляющих сигналов. Собственно взаимодействие заключается в выполнении одной из двух операций: МП либо выводит (записывает) данные, либо вводит (считывает) данные или команды. В каждой из этих операций процессор должен указывать то устройство, с которым он будет взаимодействовать; другими словами, процессор должен адресовать ячейку памяти либо порт ввода или вывода.

Для передачи данных или выборки команды процессор инициирует так называемый цикл шины. Кроме процессора, цикл шины могут инициировать и другие устройства, например, арифметический сопроцессор.

Цикл шины представляет собой последовательность событий, в течение которой процессор выдает адрес ячейки памяти или периферийного устройства, а затем формирует сигнал записи или считывания, а также выдает данные в операции записи. Выбранное устройство воспринимает данные с шины в цикле записи или помещает данные на шину в цикле считывания. По окончании цикла шины устройство фиксирует записываемые данные или снимает считываемые данные.

Рассмотрим цикл шины микропроцессора 8086, который имеет совмещенную 20-разрядную шину адреса/данных/состояния и шину управления (рис. 4).

Рис. 4. Шины микропроцессора 8086

Цикл шины микропроцессора 8086 состоит минимум из четырех тактов синхронизации, называемых также состояниями T, которые идентифицируются спадающим фронтом сигнала синхронизации CLC. В первом такте (T1) процессор выдает на шину адреса/данных/состояния AD20-AD0 адрес устройства, которое будет источником или получателем информации в текущем цикле шины. Во втором такте (T2) процессор снимает адрес с шины и либо переводит тристабильные буферы линий AD15-AD0 в высокоимпедансное состояние, подготавливая их к выводу информации в цикле считывания, либо выдает на них данные в цикле записи.

Управляющие сигналы, инициирующие считывание, запись или подтверждение прерываний, всегда выдаются в такте T2. В максимальной конфигурации системы сигнал записи формируется в такте T3, чтобы гарантировать стабилизацию сигналов данных до начала действия этого сигнала.

В такте T2 старшие четыре линии адреса/состояния переключаются с режима выдачи адреса на режим выдачи состояния. Сигналы состояния предназначены в основном для диагностических целей, например, идентифицируют сегментный регистр, который участвует в формировании адреса памяти.

В течение такта T3 процессор сохраняет информацию на линиях состояния. На шине данных в цикле записи сохраняются выводимые данные, а в цикле считывания производится опрос вводимых данных.

Тактом T4 заканчивается цикл шины. В этом такте снимаются все управляющие сигналы и выбранное устройство отключается от шины.

Таким образом, цикл шины для памяти или периферийного устройства представляет собой асинхронное действие. Устройство может управлять циклом шины только путем введения состояний ожидания.

Процессор выполняет цикл шины в том случае, когда ему необходимо осуществить запись или считывание информации. Если циклы шины не требуются, шинный интерфейс реализует холостые состояния Ti, в течение которых процессор сохраняет на линиях состояния сигналы состояния от предыдущего цикла шины.

Статьи к прочтению:
  • Штрих-кодовая татуировка теперь требуется по закону
  • Симметричная многопроцессорная архитектура smp

Как выбрать видеокарту. Или почему шина 256 бит — не рулит. (см. описание)

Похожие статьи:
  • Интерфейсная шина i2c. назначение, форматы передачи данных, основные технические характеристики Современные устройства радиоэлектронной техники используют большое число микросхем, что требует много линий для адресации, выбора и управления их…
  • Шины микропроцессорной системы Шины микропроцессорной системы и циклы обмена Самое главное, что должен знать разработчик микропроцессорных систем — это принципы организации обмена…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *