Что такое степень точности интеграл
Перейти к содержимому

Что такое степень точности интеграл

  • автор:

Что такое степень точности интеграл

В ряде задач возникает необходимость вычисления определенного интеграла от некоторой функции:

(2.1)

где – подынтегральная функция, непрерывная на отрезке .

Геометрический смысл интеграла заключается в том, что если на отрезке , то интеграл численно равен площади фигуры, ограниченной графиком функции , отрезком оси абсцисс, прямой и прямой (рис.2.1). Таким образом, вычисление интеграла равносильно вычислению площади криволинейной трапеции.

Рис.2.1. Геометрический смысл интеграла

Задача численного интегрирования состоит в замене исходной подынтегральной функции некоторой аппроксимирующей функцией (обычно полиномом).

Численное интегрирование применяется, когда:

  • сама подынтегральная функция не задана аналитически, а например, представлена в виде таблицы значений;
  • аналитическое представление подынтегральной функции известно, но её первообразная не выражается через аналитические функции.

Способы численного вычисления определенных интегралов основаны на замене интеграла конечной суммой:

(2.2)

где – числовые коэффициенты, выбор которых зависит от выбранного метода численного интегрирования, – узлы интегрирования
(). Выражение (2.2) называют квадратурной формулой.

Разделим отрезок на N равных частей, то есть на N элементарных отрезков. Длина каждого элементарного отрезка:

(2.3)

Тогда значение интеграла можно представить в виде:

(2.4)

Из этого выражения видно, что для численного интегрирования на отрезке , достаточно построить квадратурную формулу на каждом частичном отрезке .

Погрешность квадратурной формулы определяется выражением:

(2.5)

и зависит от выбора коэффициентов и от расположения узлов .

Погрешность численного интегрирования определяется шагом разбиения. Уменьшая этот шаг, можно добиться большей точности. Однако увеличивать число точек не всегда возможно. Если функция задана в табличном виде, приходится ограничиваться заданным множеством точек. Повышение точности может быть в этом случае достигнуто за счет повышения степени используемых интерполяционных многочленов.

Формулы Ньютона-Котеса получаются путем замены подынтегральной функции интерполяционным многочленом Лагранжа с разбиением каждого частичного отрезка интегрирования на n равных частей. Получившиеся формулы используют значения подынтегральной функции в узлах интерполяции и являются точными для всех многочленов степени х зависящей от числа узлов. Точность решения растет с увеличением степени интерполяционного многочлена.

Метод Гаусса не предполагает разбиения отрезка интегрирования на равные промежутки. Формулы численного интегрирования интерполяционного типа ищутся таким образом, чтобы они обладали наивысшим порядком точности при заданном числе узлов. Узлы и коэффициенты формул численного интегрирования находятся из условий обращения в нуль их остаточных членов для всех многочленов максимально высокой степени.

Квадратурные формулы для сингулярных интегралов, имеющих почти гауссовскую степень точности Текст научной статьи по специальности «Математика»

Аннотация научной статьи по математике, автор научной работы — Хубежты Шалва Соломонович, Цуцаев Арсен Олегович

Построены квадратурные формулы для сингулярных интегралов с ядром типа Коши, близкие по точности к гауссовским. Алгебраическая степень точности равна 2 n. Но она характерна тем, что в процессе увеличения n при переходе от данного n=n 1 к последующему n=n 1 + 1 требуется перевычисление значений функции , но не во всех узлах квадратуры, а только в их части. Кроме этого, если обычные квадратурные формулы для сингулярных интегралов имели наивысшую степень точности только тогда, когда параметр сингулярности являлся корнем присоединенной функции Лежандра второго рода, то для построенных квадратурных формул существует более широкое множество значений параметра сингулярности. Такими множествами являются корни многочленов Чебышева первого и второго рода.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Хубежты Шалва Соломонович, Цуцаев Арсен Олегович

О квадратурных формулах для сингулярных интегралов с весовыми функциями

Приближенное решение сингулярного интегрального уравнения, не ограниченное на концах интегрирования, с применением рядов Чебышева

Об аппроксимации интегралов типа Коши с весовыми функциями на отрезках интегрирования
К численному решению сингулярных интегральных уравнений первого рода на отрезках
О численном решении одной задачи рассеяния. Анализ численных результатов
i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Quadrature Formulas for Singular Integrals with Nearly Gaussian Degree of Accuracy

Quadrature formulas for singular integrals with the Cauchy kernel, similar in accuracy to the Gaussian ones, were constructed. The algebraic degree of accuracy is 2 n. But it is characterized by the fact that in the process of n increase in the transition from the present n=n 1 to the next n=n 1 + 1 it is necessary to re-calculate the value of function , however, not in all nodes of the quadrature but only in part of them. In addition, if the usual quadrature formulas for singular integrals have the highest degree of accuracy, it is only when the singularity parameter was the root of the associated Legendre function of the second kind, the wider range of singularity parameter values exists for the constructed quadrature formulas. These sets are the roots of the Chebyshev polynomials of the first and second kinds.

Текст научной работы на тему «Квадратурные формулы для сингулярных интегралов, имеющих почти гауссовскую степень точности»

КВАДРАТУРНЫЕ ФОРМУЛЫ ДЛЯ СИНГУЛЯРНЫХ ИНТЕГРАЛОВ, ИМЕЮЩИХ ПОЧТИ ГАУССОВСКУЮ СТЕПЕНЬ ТОЧНОСТИ

© 2015 г. Ш.С. Хубежты, А.О. Цуцаев

Хубежты Шалва Соломонович — доктор физико-математических наук, профессор, кафедра математического анализа, Северо-Осетинский государственный университет, ул. Ватутина, 46, г. Владикавказ, 362025; ведущий научный сотрудник, Южный математический институт ВНЦ РАН и Правительства Республики Северная Осетия — Алания, ул. Маркуса, 22, г. Владикавказ, 362027, e-mail: shalva57@rambler.ru

Цуцаев Арсен Олегович — аспирант, Южный математический институт ВНЦ РАН и Правительства Республики Северная Осетия-Алания, ул. Маркуса, 22, г. Владикавказ, 362027, e-mail: tsutsaev@yandex.ru

Khubezhty Shalva Solomonovich — Doctor of Physical and Mathematical Science, Professor, Department of Mathematical Analysis, North Ossetian State University, Vatutin St., 46, Vladikavkaz, 362025, Russia; Leading Researcher, Southern Mathematics Institute of VSC RAS and the Government of the Republic of North Ossetia-Alania, Marcus St., 22, Vladikavkaz, 362027, Russia, e-mail: shalva57@rambler.ru

Tsutsaev Arsen Olegovich — Post-Graduate Student, Southern Mathematics Institute of VSC RAS and the Government of the Republic of North Ossetia-Alania, Marcus St., 22, Vladikavkaz, 362027, Russia, e-mail: tsutsaev@yandex.ru

Построены квадратурные формулы для сингулярных интегралов с ядром типа Коши, близкие по точности к га-уссовским. Алгебраическая степень точности равна 2п. Но она характерна тем, что в процессе увеличения п при переходе от данного п=п\ к последующему п=п\ + ! требуется перевычисление значений функции ф(7), но не во всех узлах квадратуры, а только в их части. Кроме этого, если обычные квадратурные формулы для сингулярных интегралов имели наивысшую степень точности только тогда, когда параметр сингулярности являлся корнем присоединенной функции Лежандра второго рода, то для построенных квадратурных формул существует более широкое множество значений параметра сингулярности. Такими множествами являются корни многочленов Чебышева первого и второго рода.

Ключевые слова: сингулярный интеграл с ядром Коши, квадратурная формула, чебышевский вес, гауссовская точность.

Quadrature formulas for singular integrals with the Cauchy kernel, similar in accuracy to the Gaussian ones, were constructed. The algebraic degree of accuracy is 2n. But it is characterized by the fact that in the process of n increase in the transition from the present n=n1 to the next n=n1 +1 it is necessary to re-calculate the value offunction ), however, not in all nodes of the quadrature but only in part of them. In addition, if the usual quadrature formulas for singular integrals have the highest degree of accuracy, it is only when the singularity parameter was the root of the associated Legendre function of the second kind, the wider range of singularity parameter values exists for the constructed quadrature formulas. These sets are the roots of the Chebyshev polynomials of the first and second kinds.

Keywords: singular integral with Cauchy kernel, quadrature formula, Chebyshev weight, Gauss accuracy.

Общая постановка задачи и её актуальность

В существующей ныне литературе, относящейся к вопросу теории квадратурных формул для сингулярных интегралов с ядром Коши, значительный интерес представляют квадратурные формулы Гаусса для таких интегралов (см., напр., [1, 2]). В соответствующих работах этого направления показывается, что достижение гауссовской степени точности в случае сингулярных интегралов вида

где pit) — заданная на [-1,+1] конкретная суммируемая (обычно знакопостоянная) функция; ф(<) -

произвольная функция из некоторого класса гладких функций, возможно при определенном выборе значений параметра сингулярности x. А именно в

общем случае предполагается, что значениями х являются нули так называемых присоединенных функций, или функций второго рода (см., напр., [3]). К часто встречающимся в приложениях сингулярным интегралам вида (1) обычно относятся интегралы с весовыми функциями (1 — /)р (1 + /) (р,д >-1) (см., напр., [2, 4 — 6]). Как подтверждается упомянутыми и рядом других работ, сингулярные интегралы с такими весовыми функциями имеют применение в контактных задачах теории упругости, в том числе в теории трещин.

К наиболее приемлемому подходу к вычислению (приближенно) интегралов

при произвольных значениях х из рассматривае-

мого интервала следует отнести применение к (2) квадратурных формул для сингулярных интегралов, основанных на аппроксимации функции ф(/) ее интерполяционными полиномами, построенных по корням ортогональных на отрезке [-1, +1] по весу (1 — /)р (1 + /) полиномов. К основным вопросам в направлении исследования и приложения построенных на такой основе квадратурных формул относятся такие вопросы, как оценка их погрешности на различных классах функций ф(?), сходимость на возможно широких классах плотностей ф(?), влияние ряда локальных свойств последних на поведение их остаточных членов, а также влияние вычислительных погрешностей (округления, наследственных) и т.п. Отметим также, что при конструировании на такой основе квадратурных формул определенного внимания требует вычисление независящих от ф стандартных интегралов

dt (p, q >-1), точное вычисление

двух ортогональных по данному весу (1 — /)р (1 + /) полиномов последовательных степеней (п и п +1). Очевидно, что такие квадратурные формулы могут быть построены теми же способами, что и упомянутые выше, и имеют алгебраическую степень точности 2п.

В [9] изучен случай р = q = — и построены квадратурные формулы

iVl -12 (t — x) n +1 k=i

(x)Un (x) —L-Ф(xkn+1) , ГДе

sin(n +1) arccos x Un (x) =- -, T (x) = cos n arccos x —

ортогональные многочлены Чебышева.

В настоящей заметке мы будем рассматривать 1

случаи p = q = —, т.е. интеграл вида

которых для ряда значений р, q возможно методами теории функций комплексного переменного (см. также [7]). В общем случае эти интегралы могут быть вычислены приближенно с любой заданной степенью точности. Тем самым в случае заданных точно (или с большой точностью) исходных данных (плотностей сингулярных интегралов) можно, по-видимому, утверждать определенную вычислительную эффективность известных ныне многих квадратурных формул. Тем не менее следует упомянуть о связанных с практическими приложениями задачах с приближенными исходными данными (например, когда эти данные определяются на основе эксперимента). Так, к примеру, может обстоять дело при численном решении определенных классов сингулярных интегральных уравнений, относящихся к некоторым задачам физики (см., напр., [8]), когда значения ядра рассматриваемого интегрального уравнения определяются путем эксперимента с последующим сравнением результатов вычислений на различных шагах. При возникновении такого рода ситуаций наиболее эффективным представляется применение к аппроксимации сингулярных интегралов квадратурных формул такой структуры, чтобы в возможно нужном процессе последовательного увеличения числа узлов квадратуры найденное на данном шаге значение ядра уравнения могло быть использовано вторично при последующем значении числа узлов. С этой целью представляется полезным рассмотрение квадратурных формул для сингулярных интегралов, построение которых будет основано на применении в качестве интерполяционных узлов совокупности нулей

Согласно сказанному выше, построение интересующей нас в данном случае квадратурной формулы для интеграла (3) основывается на аппроксимации функции ф(?) интерполяционным многочленом, построенным по значениям ф(?) в узлах, представляющих нули многочлена ип (?)Цп+1(?), где Ц (?) и — чебышевские многочлены вто-

рого рода степени п, п +1.

Построение квадратурной формулы по узлам нулей полинома ип (0Ц

С целью построения оговоренного выше интерполяционного полинома обозначим через пк=х

и 1+=1 нули полиномов ип (?), Ц+^О соответственно. В первую очередь нам нужно найти детальное выражение значений

ц (иж=хы, и (цлт=хы+1.

[ип (Ц ,(/)];=^ = Ц (Хп )ип+1(Хп ), ц (Г )ип+,(/)];=^ = ип (X

Используя далее представления

sin(n +1) arccos t

основе (4) убедиться в справедливости равенств

г п +1 равняется нулю, а первое вычисляется по известной

и (Т)ип+1(0]/=хы кп ‘ в теории ортогональных многочленов [3] формуле

п +1 1 f^-tün±i(t) ^ т , л T , л

-I- n+1 dt = -ТП+2(X), где Tn±2(x) — много-

*n1 sin2 член Чебышева первого рода степени п ± 2 .

Аналогично поступаем с интегралами, содер-

Применяя указанные соотношения, для искомо- ч—1 ,

г у жащими множители вида (Т — хы+(вторые ин-

го интерполяционного многочлена L2n (ф; t) получим представление

L2;t) = ü(t)ü+1(t)x (5) 1 jVI-t2 ün(tün+1(t)dt

2k ^ (t — X)(t — Xkn+1)

i n sin — 1 n + 1 sin _

n + U = 1 t — Xkn n + 2k = 1 t — Xkn + 1

1 I 1 ГЛ-^Г ün (t )ün+,(t )dt

Подставляя (5) в (3) вместо ф($), получаем при- — Í V1-1

1 1 ATT ün (t )ün+,(t )dt

2 ^ nV^n+l^-П 1 t — Xkn+1

, 1 _ ,ч Согласно замеченному выше, рассмотрению

1 . Г-2 Ф(Т) , « » ТГ Г

— IV1 -t dt и подлежит второй интеграл в правой части. Преоб-

И-£sm2-^ф^)! Г^Т» И(t)ип+1(t) ^ + 1 Г^МИ^:

п +1 к=1 п +1 п (Т-х)^^) п[. Т-х^.

i Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

п + 2 к-. п + 2 п -1 (Т —х)(Т —х^.) п -. Т-х^п+1

Следовательно, построение указанной квадра- Используя квадратурную формулу Гаусса (см. [5,

турной формулы сводится к вычислению интегра- 1 1 •-и (Т)И (Т)ЛТ

лов вида 6]), поучаем — [ V1 — Т 2 п -=

1 ип(и1(,) й , 1 [УГТ ^^ ет. (6) 1 п+т ,пп-1 Г и (ть+Т (х )

п[; (Т — х)(Т — хь) ‘ п[; (Т — х)(Т — хп+т) () =-Ц2>2 И„(х^.)Г^0 ^^

Это может быть осуществлено с учетом ортогональности системы полиномов по весу 1 . 2 кп тт „ чтт, „

— =-Г sln -Г ип (хкп+. )Ип+. (хкп+. ) =

л/1 -12 применением ряда формул, относящихся к

взаимосвязи этих полиномов с полиномами Чебы- =—i—sin2 kn (—1)k —1(—)—(n + = 1. шева первого рода . В частности, очевидно, n + 2 n + 2 sin2 kn

что определение первого из этих интегралов может _

г В результате окончательно приходим к квадра-быть основано на вычислении двух интегралов

— Г турной формуле вида 1 [ >/■ -Т2 Ф(Т)е, и

1 Г ЛТТ» Ип (Т)Ип+.(Т) Л (7) 1 п+Г Sin2 п+ЬФ(хкп+■)

причем второй интеграл в (7) заведомо равен нулю ^

в си^ ортогональности на [-1,1] системы полино- 1 п sin -~ф(хкп)

мов по весу VI — Т . Преобразуем первый п +1 к=■ х — хкп

интеграл в (7) к виду ^ + U»(x)r».,(x)+■. «П’п + ■)S;nC°;^» + +1 —

1/2(sin(2n + 3); — sin;) + sin;

1/2(sin(2n + 3)5 + sin 3)

и воспользуемся упомянутым выше свойством ор- sin $

тогональности. Получим, что второе слагаемое

sin(n + 2)3cos(n +1)5

sin 3 где х = cos 3.

Поэтому итоговая формула

Приближенное вычисление определенного интеграла
с помощью разложения подынтегральной функции в ряд

Этот небольшой урок позволит не только освоить типовую задачу, которая довольно часто встречается на практике, но и закрепить материалы статьи Разложение функций в степенные ряды. Нам потребуется таблица разложений функций в степенные ряды, которую можно раздобыть на странице Математические формулы и таблицы. Кроме того, читатель должен понимать геометрический смысл определенного интеграла и обладать элементарными навыками интегрирования.

На уроке Определенный интеграл. Как вычислить площадь фигуры? речь шла о том, что определенный интеграл – это площадь. Но в некоторых случаях интеграл является очень трудным или неберущимся, поэтому соответствующую площадь в большинстве случаев можно вычислить только приближенно.

Например: вычислить определенный интеграл . Такой интеграл является неберущимся, но аналитически и геометрически всё хорошо:

Приближенное вычисление определенного интеграла с помощью разложения подынтегральной функции в ряд

Мы видим, что подынтегральная функция непрерывна на отрезке , а значит, площадь существует, и определенный интеграл численно равен заштрихованной площади. Беда только в том, что данную площадь можно вычислить лишь приближенно с определенной точностью. На основании вышеизложенных фактов и появилась типовая задача курса высшей математики.

Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд Маклорена, с точностью до 0,001

Решение: Идея метода состоит в том, чтобы заменить подынтегральную функцию соответствующим степенным рядом (если он, конечно, сходится к ней на промежутке интегрирования).

Поэтому на первом этапе нужно разложить подынтегральную функцию в ряд Маклорена. Эту распространенную на практике задачу мы очень подробно рассмотрели на уроке Разложение функций в степенные ряды. Кстати, рекомендую всем прочитать, поскольку некоторые вещи, о которых сейчас пойдет разговор, могут показаться малопонятными.

Используем табличное разложение:

В данном случае

Обратите внимание, как я записал ряд. Специфика рассматриваемого задания требует записывать только несколько первых членов ряда. Мы не пишем общий член ряда , он здесь ни к чему.

Чем больше членов ряда мы рассматриваем – тем лучше будет точность. Сколько слагаемых рассматривать? Из практики могу сказать, что в большинстве случаев для достижения точности 0,001 достаточно записать первые 4 члена ряда. Иногда требуется меньше. А иногда больше. Если в практическом примере их не хватило, то придётся переписывать всё заново =( Поэтому целесообразно провести предварительный черновой анализ или перестраховаться, изначально записав побольше членов (собственно, такой же совет как и для приближенного вычисления значения функции с помощью ряда).

Следует также отметить, что точность до трёх знаков после запятой самая популярная. Также в ходу и другая точность вычислений, обычно 0,01 или 0,0001.

Теперь второй этап решения:
Сначала меняем подынтегральную функцию на полученный степенной ряд:

Почему это вообще можно сделать? Данный факт пояснялся ещё на уроке о разложении функций в степенные ряды – график бесконечного многочлена в точности совпадает с графиком функции ! Причем, в данном случае утверждение справедливо для любого значения «икс», а не только для отрезка интегрования .

На следующем шаге максимально упрощаем каждое слагаемое:

Лучше это сделать сразу, чтобы на следующем шаге не путаться с лишними вычислениями.

После упрощений почленно интегрируем всю начинку – напоминаю, что эта замечательная возможность обусловлена равномерной сходимостью степенных рядов:

Интегралы здесь простейшие, на этом я не останавливаюсь.

На завершающем этапе вспоминаем школьную формулу Ньютона-Лейбница . Для тех, кто не смог устоять перед Ньютоном и Лейбницем, есть урок Определенные интегралы. Примеры решений.

Техника вычислений стандартна: сначала подставляем в каждое слагаемое 0,3, а затем ноль. Для вычислений используем калькулятор:

Сколько членов ряда нужно взять для окончательных вычислений? Если сходящийся ряд знакочередуется, то абсолютная погрешность вычислений по модулю не превосходит последнего отброшенного члена ряда. В нашем случае уже третий член ряда меньше требуемой точности 0,001, и поэтому если мы его отбросим, то заведомо ошибёмся не более чем на 0,000972 (осознайте, почему!). Таким образом, для окончательного расчёта достаточно первых двух членов: .

Ответ: , с точностью до 0,001

Что это получилось за число с геометрической точки зрения? – это приблизительная площадь заштрихованной фигуры (см. рисунок выше).

Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд по степеням , с точностью до 0,001

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как-то незаслуженно я обошел стороной арктангенс, ни разу не разложив его в ряд. Исправим оплошность.

Вычислить определенный интеграл с точностью 0,01 с помощью разложения подынтегральной функции в ряд.

Решение: Есть сильное подозрение, что данный интеграл является берущимся, правда, решение не самое простое.

Разложим подынтегральную функцию в ряд Маклорена. Используем разложение:

В данном случае

Здесь повезло, что в итоге степени таки остались целыми, дробные степени было бы труднее интегрировать.

Бывает и так. Члены с возу – студенту легче.

Ответ: с точностью до 0,01.

И снова обратите внимание, что точность 0,01 здесь гарантирована лишь потому, что сходящийся ряд знакочередуется. Для ряда с положительными членами, например, ряда такую оценку проводить нельзя, поскольку сумма отброшенного «хвоста» может запросто превысить 0,00089. Что делать в таких случаях? Расскажу в конце урока. А пока открою секрет, что во всех сегодняшних примерах ряды знакочередуются.

И, конечно, следует контролировать область сходимости ряда. В рассмотренном примере она, кстати, «урезана»: (из-за квадратного корня), однако наш отрезок интегрирования полностью лежит в данной области.

Что произойдёт в «нелегальном» случае, например, с интегралом ? Функция так же прекрасно разложится в ряд, члены ряда так же замечательно проинтегрируются. Но, когда мы начнем подставлять значение верхнего предела по формуле Ньютона-Лейбница, то увидим, что числа будут неограниченно расти, то есть каждое следующее число будет больше, чем предыдущее. Ряд-то сходится лишь на отрезке . Это не паранойя, на практике так время от времени бывает.

Что делать, если вам встретился подобный интеграл? Во-первых, имеет смысл проконсультировать с преподавателем – скорее всего, это опечатка в задачнике или методичке, где авторы недосмотрели, что промежуток интегрирования «вылез» за область сходимости ряда. А может и досмотрели (особенно, если вы учитесь углублённо). Дело в том, что на самом деле этот интеграл разрешим! Разбиваем его на две части:

Первый интеграл вычисляется штатно, а вот во втором – раскладываем функцию в ряд Тейлора по степеням с помощью производных (см. последний параграф), тогда область сходимости полученного ряда будет такова:

– прибавляем ко всем частям неравенства единицу:
– и далее преспокойно интегрируем ряд в его области сходимости!

Вот такая вот совсем не очевидная задача, выражаю благодарность одному из читателей, который указал на этот вариант развития событий.

Интеграл с арксинусом я рассматривать не буду, поскольку он занесен в красную книгу. Лучше дополнительно рассмотреть что-нибудь «бюджетное»:

Вычислить определенный интеграл с точностью 0,001 путем разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Это пример для самостоятельного решения. Что касаемо нуля, то он здесь не помеха – подынтегральная функция терпит лишь устранимый разрыв в точке , и поэтому несобственный интеграл здесь и рядом не валялся, т.е. речь идёт по-прежнему об определённом интеграле. В ходе решения вы увидите, что полученный ряд прекрасно сходится к нулю.

В заключение рассмотрим еще пару примеров, которые несколько сложнее.

Вычислить определенный интеграл с точностью 0,001 с помощью разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

Решение: Анализирую подынтегральную функцию, приходим к выводу, что нужно использовать биномиальное разложение. Но сначала функцию надо представить в соответствующем виде:

К сожалению, ни один частный случай биномиального разложения не подходит, и нам придется использовать громоздкую общую формулу:

В данном случае: ,

Разложение уже на этом этапе лучше максимально упростить. Замечаем также, что четвертый член ряда нам, очевидно, не потребуется, так как в нём еще до интегрирования появилась дробь , которая заведомо меньше требуемой точности 0,001.

Не забываем, что есть еще один множитель:

Наиболее кропотливый этап пройден, вычислим интеграл:

Ответ: с точностью до 0,001.

Нечто подобное для самостоятельного решения:

Вычислить определенный интеграл с точностью 0,001 путем разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

И напоследок обещанный секрет – что делать, если все члены ряда положительны? Скорее всего, в этом случае от вас не потребует вычислить интеграл «с точностью до», а попросят, например, найти сумму первых трёх членов ряда и опционально округлить её до скольких-то знаков после запятой. Но это будет вовсе не «с точностью до», т.к. для положительных рядов довольно трудно оценить сумму остатка. Однако, если «тяжёлый случай» таки имеет место, то обратитесь за консультацией к преподавателю; в рамках данной статьи я не буду освещать специальные методы, которые не находят широкого практического применения.

Рассмотренная типовая задача на самом деле довольно неприятна, так как не существует простых способов проверки результата. По невнимательности легко пропустить какое-нибудь число, степень, неточно разложить функцию в ряд, неверно проинтегрировать, допустить банальную ошибку в вычислениях. Поэтому очень важно подходить к решению таких задач с ясной головой.

Решения и ответы:

Пример 2: Решение: разложим подынтегральную функцию в ряд.
Используем частный случай биномиального разложения:

В данном случае:

Таким образом:

Ответ: с точностью до 0,001.

Пример 4: Решение: разложим подынтегральную функцию в ряд.
Используем разложение:

Таким образом:

Ответ: с точностью до 0,001.

Пример 6: Решение:

Используем биномиальное разложение:

В данном случае: , :

Таким образом:

Ответ: с точностью до 0,001.

Автор: Емелин Александр

Блог Емелина Александра

(Переход на главную страницу)

Вычисление определенного интеграла. Формула Ньютона-Лейбница

Решение прикладных задач сводится к вычислению интеграла, но не всегда это возможно сделать точно. Иногда необходимо знать значение определенного интеграла с некоторой степенью точности, к примеру, до тысячной.

Существуют задачи, когда следовало бы найти приближенное значение определенного интеграла с необходимой точностью, тогда применяют численное интегрирование такое, как метод Симпосна, трапеций, прямоугольников. Не все случаи позволяют вычислить его с определенной точностью.

Данная статья рассматривает применение формулы Ньютона-Лейбница. Это необходимо для точного вычисления определенного интеграла. Будут приведены подробные примеры, рассмотрены замены переменной в определенном интеграле и найдем значения определенного интеграла при интегрировании по частям.

Формула Ньютона-Лейбница

Определение 1

Когда функция y = y ( x ) является непрерывной из отрезка [ a ; b ] ,а F ( x ) является одной из первообразных функции этого отрезка, тогда формула Ньютона-Лейбница считается справедливой. Запишем ее так ∫ a b f ( x ) d x = F ( b ) — F ( a ) .

Данную формулу считают основной формулой интегрального исчисления.

Чтобы произвести доказательство этой формулы, необходимо использовать понятие интеграла с имеющимся переменным верхним пределом.

Когда функция y = f ( x ) непрерывна из отрезка [ a ; b ] , тогда значение аргумента x ∈ a ; b , а интеграл имеет вид ∫ a x f ( t ) d t и считается функцией верхнего предела. Необходимо принять обозначение функции примет вид ∫ a x f ( t ) d t = Φ ( x ) , она является непрерывной, причем для нее справедливо неравенство вида ∫ a x f ( t ) d t ‘ = Φ ‘ ( x ) = f ( x ) .

Зафиксируем, что приращении функции Φ ( x ) соответствует приращению аргумента ∆ x , необходимо воспользоваться пятым основным свойством определенного интеграла и получим

Φ ( x + ∆ x ) — Φ x = ∫ a x + ∆ x f ( t ) d t — ∫ a x f ( t ) d t = = ∫ a x + ∆ x f ( t ) d t = f ( c ) · x + ∆ x — x = f ( c ) · ∆ x

где значение c ∈ x ; x + ∆ x .

Зафиксируем равенство в виде Φ ( x + ∆ x ) — Φ ( x ) ∆ x = f ( c ) . По определению производной функции необходимо переходить к пределу при ∆ x → 0 , тогда получаем формулу вида Φ ‘ ( x ) = f ( x ) . Получаем, что Φ ( x ) является одной из первообразных для функции вида y = f ( x ) , расположенной на [ a ; b ] . Иначе выражение можно записать

F ( x ) = Φ ( x ) + C = ∫ a x f ( t ) d t + C , где значение C является постоянной.

Произведем вычисление F ( a ) с использованием первого свойства определенного интеграла. Тогда получаем, что

F ( a ) = Φ ( a ) + C = ∫ a a f ( t ) d t + C = 0 + C = C , отсюда получаем, что C = F ( a ) . Результат применим при вычислении F ( b ) и получим:

F ( b ) = Φ ( b ) + C = ∫ a b f ( t ) d t + C = ∫ a b f ( t ) d t + F ( a ) , иначе говоря, F ( b ) = ∫ a b f ( t ) d t + F ( a ) . Равенство доказывает формулу Ньютона-Лейбница ∫ a b f ( x ) d x + F ( b ) — F ( a ) .

Приращение функции принимаем как F x a b = F ( b ) — F ( a ) . С помощью обозначения формулу Ньютона-Лейбница принимает вид ∫ a b f ( x ) d x = F x a b = F ( b ) — F ( a ) .

Чтобы применить формулу, обязательно необходимо знать одну из первообразных y = F ( x ) подынтегральной функции y = f ( x ) из отрезка [ a ; b ] , произвести вычисление приращения первообразной из этого отрезка. Рассмотрим несколько примером вычисления, используя формулу Ньютона-Лейбница.

Произвести вычисление определенного интеграла ∫ 1 3 x 2 d x по формуле Ньютона-Лейбница.

Рассмотрим, что подынтегральная функция вида y = x 2 является непрерывной из отрезка [ 1 ; 3 ] , тогда и интегрируема на этом отрезке. По таблице неопределенных интегралов видим, что функция y = x 2 имеет множество первообразных для всех действительных значений x , значит, x ∈ 1 ; 3 запишется как F ( x ) = ∫ x 2 d x = x 3 3 + C . Необходимо взять первообразную с С = 0 , тогда получаем, что F ( x ) = x 3 3 .

Воспользуемся формулой Ньютона-Лейбница и получим, что вычисление определенного интеграла примет вид ∫ 1 3 x 2 d x = x 3 3 1 3 = 3 3 3 — 1 3 3 = 26 3 .

Ответ: ∫ 1 3 x 2 d x = 26 3

Произвести вычисление определенного интеграла ∫ — 1 2 x · e x 2 + 1 d x по формуле Ньютона-Лейбница.

Заданная функция непрерывна из отрезка [ — 1 ; 2 ] , значит, на нем интегрируема. Необходимо найти значение неопределенного интеграла ∫ x · e x 2 + 1 d x при помощи метода подведения под знак дифференциала , тогда получаем ∫ x · e x 2 + 1 d x = 1 2 ∫ e x 2 + 1 d ( x 2 + 1 ) = 1 2 e x 2 + 1 + C .

Отсюда имеем множество первообразных функции y = x · e x 2 + 1 , которые действительны для всех x , x ∈ — 1 ; 2 .

Необходимо взять первообразную при С = 0 и применить формулу Ньютона-Лейбница. Тогда получим выражение вида

∫ — 1 2 x · e x 2 + 1 d x = 1 2 e x 2 + 1 — 1 2 = = 1 2 e 2 2 + 1 — 1 2 e ( — 1 ) 2 + 1 = 1 2 e ( — 1 ) 2 + 1 = 1 2 e 2 ( e 3 — 1 )

Ответ: ∫ — 1 2 x · e x 2 + 1 d x = 1 2 e 2 ( e 3 — 1 )

Произвести вычисление интегралов ∫ — 4 — 1 2 4 x 3 + 2 x 2 d x и ∫ — 1 1 4 x 3 + 2 x 2 d x .

Отрезок — 4 ; — 1 2 говорит о том, что функция, находящаяся под знаком интеграла, является непрерывной, значит, она интегрируема. Отсюда найдем множество первообразных функции y = 4 x 3 + 2 x 2 . Получаем, что

∫ 4 x 3 + 2 x 2 d x = 4 ∫ x d x + 2 ∫ x — 2 d x = 2 x 2 — 2 x + C

Необходимо взять первообразную F ( x ) = 2 x 2 — 2 x , тогда, применив формулу Ньютона-Лейбница, получаем интеграл, который вычисляем:

∫ — 4 — 1 2 4 x 3 + 2 x 2 d x = 2 x 2 — 2 x — 4 — 1 2 = 2 — 1 2 2 — 2 — 1 2 — 2 — 4 2 — 2 — 4 = 1 2 + 4 — 32 — 1 2 = — 28

Производим переход к вычислению второго интеграла.

Из отрезка [ — 1 ; 1 ] имеем, что подынтегральная функция считается неограниченной, потому как lim x → 0 4 x 3 + 2 x 2 = + ∞ , тогда отсюда следует, что необходимым условием интегрируемости из отрезка. Тогда F ( x ) = 2 x 2 — 2 x не является первообразной для y = 4 x 3 + 2 x 2 из отрезка [ — 1 ; 1 ] , так как точка O принадлежит отрезку, но не входит в область определения. Значит, что имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ — 1 ; 1 ] .

Ответ: ∫ — 4 — 1 2 4 x 3 + 2 x 2 d x = — 28 , имеется определенный интеграл Римана и Ньютона-Лейбница для функции y = 4 x 3 + 2 x 2 из отрезка [ — 1 ; 1 ] .

Перед использованием формулы Ньютона-Лейбница нужно точно знать о существовании определенного интеграла.

Замена переменной в определенном интеграле

Когда функция y = f ( x ) является определенной и непрерывной из отрезка [ a ; b ] , тогда имеющееся множество [ a ; b ] считается областью значений функции x = g ( z ) , определенной на отрезке α ; β с имеющейся непрерывной производной, где g ( α ) = a и g β = b , отсюда получаем, что ∫ a b f ( x ) d x = ∫ α β f ( g ( z ) ) · g ‘ ( z ) d z .

Данную формулу применяют тогда, когда нужно вычислять интеграл ∫ a b f ( x ) d x , где неопределенный интеграл имеет вид ∫ f ( x ) d x , вычисляем при помощи метода подстановки.

Произвести вычисление определенного интеграла вида ∫ 9 18 1 x 2 x — 9 d x .

Подынтегральная функция считается непрерывной на отрезке интегрирования, значит определенный интеграл имеет место на существование. Дадим обозначение, что 2 x — 9 = z ⇒ x = g ( z ) = z 2 + 9 2 . Значение х = 9 , значит, что z = 2 · 9 — 9 = 9 = 3 , а при х = 18 получаем, что z = 2 · 18 — 9 = 27 = 3 3 , тогда g α = g ( 3 ) = 9 , g β = g 3 3 = 18 . При подстановке полученных значений в формулу ∫ a b f ( x ) d x = ∫ α β f ( g ( z ) ) · g ‘ ( z ) d z получаем, что

∫ 9 18 1 x 2 x — 9 d x = ∫ 3 3 3 1 z 2 + 9 2 · z · z 2 + 9 2 ‘ d z = = ∫ 3 3 3 1 z 2 + 9 2 · z · z d z = ∫ 3 3 3 2 z 2 + 9 d z

По таблице неопределенных интегралов имеем, что одна из первообразных функции 2 z 2 + 9 принимает значение 2 3 a r c t g z 3 . Тогда при применении формулы Ньютона-Лейбница получаем, что

∫ 3 3 3 2 z 2 + 9 d z = 2 3 a r c t g z 3 3 3 3 = 2 3 a r c t g 3 3 3 — 2 3 a r c t g 3 3 = 2 3 a r c t g 3 — a r c t g 1 = 2 3 π 3 — π 4 = π 18

Нахождение можно было производить, не используя формулу ∫ a b f ( x ) d x = ∫ α β f ( g ( z ) ) · g ‘ ( z ) d z .

Если при методе замены использовать интеграл вида ∫ 1 x 2 x — 9 d x , то можно прийти к результату ∫ 1 x 2 x — 9 d x = 2 3 a r c t g 2 x — 9 3 + C .

Отсюда произведем вычисления по формуле Ньютона-Лейбница и вычислим определенный интеграл. Получаем, что

∫ 9 18 2 z 2 + 9 d z = 2 3 a r c t g z 3 9 18 = = 2 3 a r c t g 2 · 18 — 9 3 — a r c t g 2 · 9 — 9 3 = = 2 3 a r c t g 3 — a r c t g 1 = 2 3 π 3 — π 4 = π 18

Ответ: ∫ 9 18 2 x 2 x — 9 d x = π 18

Интегрирование по частям при вычислении определенного интеграла

Если на отрезке [ a ; b ] определены и непрерывны функции u ( x ) и v ( x ) , тогда их производные первого порядка v ‘ ( x ) · u ( x ) являются интегрируемыми, таким образом из этого отрезка для интегрируемой функции u ‘ ( x ) · v ( x ) равенство ∫ a b v ‘ ( x ) · u ( x ) d x = ( u ( x ) · v ( x ) ) a b — ∫ a b u ‘ ( x ) · v ( x ) d x справедливо.

Формулу можно использовать тогда, необходимо вычислять интеграл ∫ a b f ( x ) d x , причем ∫ f ( x ) d x необходимо было искать его при помощи интегрирования по частям.

Произвести вычисление определенного интеграла ∫ — π 2 3 π 2 x · sin x 3 + π 6 d x .

Функция x · sin x 3 + π 6 интегрируема на отрезке — π 2 ; 3 π 2 , значит она непрерывна.

Пусть u ( x ) = х , тогда d ( v ( x ) ) = v ‘ ( x ) d x = sin x 3 + π 6 d x , причем d ( u ( x ) ) = u ‘ ( x ) d x = d x , а v ( x ) = — 3 cos π 3 + π 6 . Из формулы ∫ a b v ‘ ( x ) · u ( x ) d x = ( u ( x ) · v ( x ) ) a b — ∫ a b u ‘ ( x ) · v ( x ) d x получим, что

∫ — π 2 3 π 2 x · sin x 3 + π 6 d x = — 3 x · cos x 3 + π 6 — π 2 3 π 2 — ∫ — π 2 3 π 2 — 3 cos x 3 + π 6 d x = = — 3 · 3 π 2 · cos π 2 + π 6 — — 3 · — π 2 · cos — π 6 + π 6 + 9 sin x 3 + π 6 — π 2 3 π 2 = 9 π 4 — 3 π 2 + 9 sin π 2 + π 6 — sin — π 6 + π 6 = 9 π 4 — 3 π 2 + 9 3 2 = 3 π 4 + 9 3 2

Решение примера можно выполнить другим образом.

Найти множество первообразных функции x · sin x 3 + π 6 при помощи интегрирования по частям с применением формулы Ньютона-Лейбница:

∫ x · sin x x 3 + π 6 d x = u = x , d v = sin x 3 + π 6 d x ⇒ d u = d x , v = — 3 cos x 3 + π 6 = = — 3 cos x 3 + π 6 + 3 ∫ cos x 3 + π 6 d x = = — 3 x cos x 3 + π 6 + 9 sin x 3 + π 6 + C ⇒ ∫ — π 2 3 π 2 x · sin x 3 + π 6 d x = — 3 cos x 3 + π 6 + 9 sincos x 3 + π 6 — — — 3 · — π 2 · cos — π 6 + π 6 + 9 sin — π 6 + π 6 = = 9 π 4 + 9 3 2 — 3 π 2 — 0 = 3 π 4 + 9 3 2

Ответ: ∫ x · sin x x 3 + π 6 d x = 3 π 4 + 9 3 2

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *