Что такое дифференциал в математике простыми словами
Перейти к содержимому

Что такое дифференциал в математике простыми словами

  • автор:

Производная как смысл жизни или что такое дифференциал(d)

Эта одна из статей серии «Производная как смысл жизни», сначала я хотел сделать одну огромную статью про почти все темы по дифференцированию, но я передумал и сделаю несколько статей, возможно так даже будет легче для людей которые пытаются найти конкретную для себя тему.

Начало

Для начала лучше ознакомиться со статьей о самой прозводной (скоро будет). Ну если вы ознакомились, или уже были ознакомлены то идем дальше.

Как мы уже знаем формула записи производной выглядит так:

-напоминаю, что Δx — приращение аргумента, Δy — приращение функции.

Мы должны понимать, что если мы уберем предел, то к f'(x) прибавиться коофициент, я ее называю «неточность».

Так же вполне логично, что при Δx->0, β->0, так как чем меньше мы делаем разницу между x и x₀, тем меньше значение «неточности»(в статье о производной об этом подробнее рассказано).

Теперь выразим из этого равенства приращение функции(Δy):

И на этом следует пока остановиться и рассмотреть график.

Смотрим дифференциалу в лицо

Расмотрим такой график:

Как мы знаем производная в точке равняется значению тангенса угла в этой точке, то есть f'(x)=tg(α). Так что давайте обозначим производную, ну и приращения которыми она ограничена.

Как мы видим приращение функции(Δy) как бы разделено на две части: BC и CD.
И ведь по-сути нам ведь интересна именно та часть, которая показывает на сколько изменился у относительно касательной — то есть BC, а CD — это лишь та «погрешность» которая нам не особо интересна, поэтому введем понятие дифференциала:

Дифференциал(d) — это линейная часть приращения функции.
Дифференциал функции(dy) — это главная линейная часть приращения функции.

Зная это введем обозначение на графике:

Вернемся к равенству

BD = Δy и мы знаем, что BD = BC + CD, а значит Δy = BC + CD, где BC мы назвали главной линейной частью приращения функции(dy), следовательно Δy = dy + βΔx.

Из формулы мы понимаем, что dy=f'(x)Δx.

Хорошо, мы определили чему равен дифференциал функции, а что же тогда является дифференциалом независимой пременной функции(аргумента).

Графически мы видим, что Δx никак не разделена касательной, то есть Δx это полное приращение функции, а значит dx = Δx.

Так же мы можем найти по формуле: dx = (x)’Δx = 1*Δx = Δx

И зная, что dy = f'(x)dx, мы можем выразить производную: f'(x)=dy/dx.

Немного пределов

Добавим с левой части и с правой предел

В самом начале мы сказали, что если β->0, то Δx->0 и наборот, а значит:

Зная, что f'(x)Δx = dy, мы делаем вывод, что:

Тогда так же мы можем сказать, что дифференциал функции — это приращения функции у которой приращение аргумента стремиться к нулю, ну и это следуется из того же графика.

В свою очередь dx по прежнему Δx

Дифференциал

Понятие и геометрический смысл дифференциала

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.

Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

Геометрический смысл дифференциала. Дифференциал функции y = f(x) равен приращению ординаты касательной S, проведённой к графику этой функции в точке M(x; y), при изменении x (аргумента) на величину (см. рисунок).

Почему дифференциал можно использовать в приближенных вычислениях?

Дифференциал, является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. В этом можно убедиться, мысленно передвигая перпендикуляр, опущенный из точки P (см. рисунок) к оси Ox, ближе к началу координат. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е.

О разных формах записи дифференциала

Дифференциал функции в точке x и обозначают

поскольку дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной.

Замечание. Нужно помнить, что если x – исходное значение аргумента, а — наращенное значение, то производная в выражении дифференциала берётся в исходной точке x ; в формуле (1) этого не видно из записи.

Дифференциал функции можно записать в другой форме:

Пример 1. Найти дифференциалы функций:

Решение. Применяя формулы дифференцироивания степенной и логарифмической функций из таблицы производных, а также формулу (4), находим:

Найти дифференциалы самостоятельно, а затем посмотреть решения

Пример 2. Найти дифференциал функции

1) выделив линейную часть;

Пример 3. Найти дифференциал функции

Пример 4. Найти дифференциал функции

в точках x = 0 и x = 1 .

В основном же задачи на дифференциалы — это более сложные, чем рассмотренные выше для разминки, поэтому стоит посетить страницу с решением задач на дифференциалы сложных функций. Скорее всего, вызывающие у вас трудности задачи именно к таким и относятся.

Свойства дифференциала

В этом и следующем параграфах каждую из функций будем считать дифференцируемой при всех рассматриваемых значениях её аргументов.

Дифференциал обладает свойствами, аналогичными свойствам производной:

(С – постоянная величина) (5)

Формулы (5) – (9) получаются из соответствующих формул для производной умножением обеих частей каждого равенства на .

Применение дифференциала в приближенных вычислениях

Установленное во втором параграфе приближенное равенство

позволяет использовать дифференциал для приближенных вычислений значений функции.

Запишем приближенное равенство более подробно. Так как

Пример 5. Пользуясь понятием дифференциала, вычислить приближенно ln 1,01.

Решение. Число ln 1,01 является одним из значений функции y = ln x . Формула (11) в данном случае примет вид

что является очень хорошим приближением: табличное значение ln 1,01 = 0,0100.

Пример 6. Пользуясь понятием дифференциала, вычислить приближенно

Решение. Число
является одним из значений функции

Так как производная этой функции

то формула (11) примет вид

Вычислить приближенно самостоятельно, а затем посмотреть решение

Пример 7. Вычислить приближенно:

Абсолютная и относительная погрешности приближенных вычислений

Пользуясь приближенным значением числа, нужно иметь возможность судить о степени его точности. С этой целью вычисляют его абсолютную и относительную погрешности.

Абсолютная погрешность приближенного числа равна абсолютной величине разности между точным числом и его приближенным значением:

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности этого числа к абсолютной величине соответствующего точного числа:

Если точное число неизвестно, то

Иногда, прежде чем применить формулу (11), требуется предварительно преобразовать исходную величину. Как правило, это делается в двух целях. Во-первых, надо добиться, чтобы величина была достаточно малой по сравнению с , так как чем меньше , тем точнее результат приближенного вычисления. Во-вторых, желательно, чтобы величина вычислялась просто.

Пример 8. Пользуясь понятием дифференциала, вычислить приближенно . Оценить точность полученного результата.

Решение. Рассмотрим функцию

Её производная равна

а формула (11) примет вид

В данном случае было бы нерационально вычислять приближенно следующим образом:

так как значение

не является малым по сравнению со значением производной в точке

Здесь удобно предварительно вынести из под корня некоторое число, например 4/3. Тогда

Умножая на 4/3, находим

Принимая табличное значение корня

за точное число, оценим по формулам (12) и (13) абсолютную и относительную погрешности приближенного значения:

Что такое дифференциал функции?

Понятие дифференциала функции связано с такими важными математическими разделами как дифференциальное и интегральное исчисление и тесно связано с понятием производной функции. Наиболее часто дифференциал применяется для приближенных вычислений, а также для оценки погрешностей формул и измерений.

Дифференциал функции — это линейная часть приращения функции. Говоря о значении дифференциала функции, рассматривают конкретную точку функции и бесконечно малое изменение аргумента.

Пусть xo есть некоторая точка из области определения функции f(x), а Δx — есть бесконечно малая величина. Тогда дифференциал функции находится как произведение значения производной функции и приращения её аргумента. Дифференциал функции f(x) обозначается как df(x).

История открытия дифференциала

Чаще всего открытие дифференциально-интегрального исчисления принято связывать с именем Исаака Ньютона, однако, этот факт активно оспаривают учёные со всего света.

Действительно, открытие целого нового направления в науке, столь значимого для её развития, было бы ошибочно считать заслугой только одного учёного. Изначально интегрирование связывали с вычислением площадей и объёмов криволинейных фигур. Такие задачи, как известно, решались ещё во времена Архимеда, поэтому его имя также имеет отношение к открытию дифференциального исчисления.

Также дифференцирование имеет отношение к решению задач на проведение касательных к различным кривым. Данное направление активно развивали греческие математики. В те времена математики столкнулись с трудностью, которую не смогли решить в дальнейшем и представители Нового времени.

Дело в том, что для определения направления прямой требовалось знать координаты как минимум двух точек, а касательная имеет лишь одну точку соприкосновения с кривой. Этот факт натолкнул учёных на мысль о том, что в одной точке кривая может иметь несколько касательных. В то время ученые пришли к выводу, что прямая состоит не из точек, а из отрезков минимальной длины. Таким образом, они считали направление касательной в некоторой точке совпадающим с направлением атомарного отрезка в данной точке.

В дальнейшем учёные Нового времени опровергли данную теорию. В этот период огромный вклад в развитие науки внёс Исаак Ньютон. Ученый сформулировал определения и принципы решения производных, а также основы дифференциального исчисления, которых придерживаются учёные и в наши дни.

Дифференциальное исчисление широко применяется в математике и других науках для решения различных задач.

Геометрический смысл дифференциала

Геометрический смысл дифференциала заключается в следующем: дифференциал функции f(x) равен приращению ординаты касательной к графику функции, которая проведена через некоторую точку с координатами (x,y) при изменении координаты x на величину Δх=dx.

Дифференциал является главной линейной частью функции относительно приращения аргумента. Чем меньше приращение функции, тем большая доля приращения приходится на эту линейную часть.

Таким образом, при бесконечно малом Δх, приращение функции можно считать равным ее дифференциалу. Это свойство дифференциала позволяет использовать его для приблизительных вычислений и оценки погрешностей измерений.

Применение дифференциала в приближенных вычислениях

Поскольку дифференциал функции является частью ее приращения, то при бесконечно малом приращении аргумента он приблизительно равен приращению функции. При этом чем меньше приращение аргумента, тем точнее значение функции. Этот факт даёт возможность использования дифференциалов для приближённых вычислений.

С помощью таких вычислений можно решать различные виды задач. Приближённые вычисления практически всегда связаны с наличием погрешности.

Использование дифференциала для оценки погрешностей

Результаты измерений в большинстве случаев содержат ошибку, обусловленную неточностью измерительных приборов.

Число, несколько превышающее или равное этой неточности, называется «предельной абсолютной погрешностью».

Отношение предельной погрешности к значению измеряемой величины называют «предельной относительной погрешностью».

Для оценки величины погрешностей измерений используют дифференциальное исчисление.

Изучаем производные

Объясните, пожалуйста, простым языком что такое дифференциал

Author24 — интернет-сервис помощи студентам

Как найти приращение функции ∆f в точке х0? Объясните, пожалуйста, как решать такое задание! Очень нужно!
Как найти приращение функции ∆f в точке х0? Объясните, пожалуйста, как решать такое задание! Очень.

Объясните пожалуйста предназначение порождающих паттернов простым языком
Вроде и uml выучил для каждого паттерна, и определения знаю, и в коде могу написать. Но не понимаю.

Объясните, пожалуйста, как строить поля из n элементов самым простым и понятным языком
Здравствуйте. Объясните, пожалуйста, как строить поля из n элементов самым простым и понятным.

Регистрация: 04.04.2015
Сообщений: 86
производная

Эксперт по математике/физике

10255 / 6791 / 3697
Регистрация: 14.01.2014
Сообщений: 15,682

ЦитатаСообщение от Regina90 Посмотреть сообщение

производная
Не надо вводить в заблуждение! Дифференциал — это линейная часть приращения функции по
543 / 486 / 104
Регистрация: 05.05.2014
Сообщений: 1,110

ЦитатаСообщение от mathidiot Посмотреть сообщение

Дифференциал — это линейная часть приращения функции

Это — чистая правда. Но вряд ли она спасет ТС. Вот Regina90, не так уж не права. dy/dx — это и впрямь производная. Но не dx и не dy, конечно
oobarbazanoo, А зачем вам это нужно? Если простой технический вуз — примите как должное, как закорючки, с которыми надо обращаться таким-то и таким-то образом. Как некие иероглифы. Если поглубже — смотрите ответ mathidiot и думайте сами.

Регистрация: 13.05.2015
Сообщений: 1,835

То есть, диференциал — это значение дельта f(x) в зависимости от дельта х. Своего рода совокупность всех точек вида (дельта х; дельта f(x)). Функция дельта х => дельта f(x). Так?

763 / 664 / 194
Регистрация: 24.11.2015
Сообщений: 2,158

Еще раз по второму кругу. Нет, дифференциал — это не дельта f(x). Дифференциал — это это линейная часть приращения функции. Эта фраза является определением. И любые попытки как-то истолковать определение обычно оказываются неверны. А вот объяснить, что такое линейное приращение, имеет смысл. Дело в том, что величина обычно называется полным приращением функции. А линейное приращение мы получим, если в точке х проведем касательную к графику функции и посмотрим, какое приращение будет у касательной между точками . Вот это и будет линейное приращение.

Добавлено через 3 минуты
Кстати, поскольку тангенс наклона касательной в точке x равен производной, происходит путаница между понятиями производной и дифференнциала. Важно подчеркнуть, что df=f'(x) dx — это точная формула (линейное приращение), причем дифференциал dx вовсе не обязан быть мал. А вот производная — это предел, к которому стремится отношение полного приращения функции к приращению аргумента при стремлении приращения аргумента к нулю.
Другое дело, что f'(x) = df/dx , то есть производная равна отношению дифференциалов. И опять же, последняя формула — точная, а в определении производной стоит предел при приращении аргумента, стремящемся к нулю.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *