Как ввести неизвестное количество чисел в питоне
Перейти к содержимому

Как ввести неизвестное количество чисел в питоне

  • автор:

Ошибка сервера в приложении ‘/’.

Описание: На сервере возникла ошибка приложения. Текущая пользовательская настройка ошибок для этого приложения не позволяет удаленно просматривать сведения об ошибке данного приложения (из соображений безопасности). Однако, сведения можно просматривать в браузерах, запущенных на локальном сервере.

Сведения: Для разрешения просмотра сведений данного сообщения об ошибке на локальном сервере создайте тег в файле конфигурации «web.config», который находится в корневом каталоге текущего веб-приложения. В теге следует задать атрибут «mode» со значением «Off».

Примечания: Отображаемую в данный момент страницу ошибок можно заменить на пользовательскую страницу ошибок, изменив атрибут «defaultRedirect» тега конфигурации приложения таким образом, чтобы он содержал URL-адрес пользовательской страницы ошибок.

Как складывать неограниченное количество чисел в Python?

Программа складывает введенные числа, а потом пишет, является ли это число четным или нет. Вопрос в следующем: Мне хотелось бы, чтобы можно было ввести неограниченное количество чисел.(А не как в моем случае num_first, num_second и num_third) Как это осуществить?

num_first = int(input("Введите первое число: ")) num_second = int(input("Введите второе число: ")) num_third = int(input("Введите третье число: ")) num = num_first + num_second + num_third print(num) if num % 2 == 0 : print("Четное") else: print("Нечетное")
  • Вопрос задан более трёх лет назад
  • 1036 просмотров

1 комментарий

Простой 1 комментарий

Обработать неизвестное количество строк в Python

Откуда взялось ограничения 1? for в Python легко справляется с неизвестным количеством строк, например при чтении из файла.

23 фев 2017 в 13:18

Ограничение 1 взялось из задач следующего типа: на ввод подается некое кол-во строк, причем не в файле. Нужно их обработать и что-то сделать. Вот пример такой задачи- pythontutor.ru/lessons/dicts/problems/sales

23 фев 2017 в 19:09

Например так: ideone.com/Zwznnu Понятно, что можно было просто циклом while сделать, но часто проще сначала распарсить входные данные, а потом циклом for по ним пройтись. Цикл for работает с любым итерируемым объектом, не обязательно определённой длины.

23 фев 2017 в 19:24

2 ответа 2

Сортировка: Сброс на вариант по умолчанию

Файл в питоне можно итерировать по строкам, например,

for line in sys.stdin: # делаем что угодно со строкой, например print(len(line)) 

Такое будет работать, только если стандарнтый поток ввода не подключен к терминалу, а например, происходит перенаправление из регулярного файла.

Либо можно читать файл по одной строке.

while True: line = sys.stdin.readline() if line == '': break # обработка print(len(line)) 

Разумеется, совсем без циклов обойтись не получится.

Чтобы во всех этих случаях остановиться, когда ввод происходит с терминала, надо нажать CTRL — D (в Linux) или CTRL — Z (в Windows).

Отслеживать
34.1k 25 25 золотых знаков 130 130 серебряных знаков 223 223 бронзовых знака
ответ дан 22 фев 2017 в 22:51
8,592 4 4 золотых знака 29 29 серебряных знаков 53 53 бронзовых знака

Цикл while здесь ни к чему: это просто многословный способ первый for-цикл написать (если баг с read-ahead буфером на Питоне 2 не рассматривать).

23 фев 2017 в 14:23

Вводим ограничение, что чтение идет только через input . Eсли данные завершились, бросается исключение ValueError (как в PythonTutor) или EOFError (как в Ideone).

Через while

while True: try: try: line = input() except (ValueError, EOFError): break # здесь можно как-то строку обработать print(line) 

Через for

«Упаковываем» цикл while в функцию, и превращаем в итератор (плюс деление каждой строки по пробельным символам):

def inputs(): while True: try: line = input() # Здесь может происходить какая-то предварительная обработка данных: data = line.split() yield data except (ValueError, EOFError): return for name, purchase, count in inputs(): # Окончательная обработка данных print(name, purchase, count) 

Часто бывает удобно делать именно вторым вариантом, если первоначальная обработка (парсинг) текста довольно сложна, и нужно отделить её от собственно обработки данных.

Массивы

Часто в программах бывает надо работать с большим количество однотипных переменных. Например, пусть вам надо записать рост каждого человека в классе — это много целых чисел. Вы можете завести по одной переменной на каждого ученика, но это очень не удобно. Специально для этого придуманы массивы.

Общее представление о массиве

Массив (в питоне еще принято название «список», это то же самое) — это переменная, в которой хранится много значений. Массив можно представлять себе в виде такой последовательности ячеек, в каждой из которых записано какое-то число:

Соответственно, переменная теперь может хранить целиком такой массив. Создается такой массив, например, путем перечисления значений в квадратных скобках:

a = [7, 5, -3, 12, 2, 0]

Теперь переменная a хранит этот массив. К элементам массива можно обращаться тоже через квадратные скобки: a[2] — это элемент номер 2, т.е. в нашем случае это -3 . Аналогично, a[5] — это 0. В квадратных скобках можно использовать любые арифметические выражения и даже другие переменные: a[2*2-1] — это 12, a[i] обозначает «возьми элемент с номером, равным значению переменной i «, аналогично a[2*i+1] обозначает «возьми элемент с номером, равным 2*i+1», или даже a[a[4]] обозначает «возьми элемент с номером, равным четвертому элементу нашего массива» (в нашем примере a[4] — это 2 , поэтому a[a[4]] — это a[2] , т.е. -3 ).

Если указанный номер слишком большой (больше длины массива), то питон выдаст ошибку (т.е. в примере выше a[100] будет ошибкой, да и даже a[6] тоже). Если указан отрицательный номер, то тут действует хитрое правило. Отрицательные номера обозначают нумерацию массива с конца: a[-1] — это всегда последний элемент, a[-2] — предпоследний и т.д. В нашем примере a[-6] равно 7. Слишком большой отрицательный номер тоже дает ошибку (в нашем примере a[-7] уже ошибка).

С элементами массива можно работать как с привычными вам переменными. Можно им присваивать значения: a[3] = 10 , считывать с клавиатуры: a[3] = int(input()) , выводить на экран: print(a[3]) , использовать в выражениях: a[3+i*a[2]] = 3+abs(a[1]-a[0]*2+i) (здесь i — какая-то еще целочисленная переменная для примера), использовать в if’ах: if a[i]>a[i-2]: , или for a[2] in range(i) и т.д. Везде, где вы раньше использовали переменные, можно теперь использовать элемент массива.

Обход массива

Но обычно вам надо работать сразу со всеми элементами массива. Точнее, сразу со всеми как правило не надо, надо по очереди с каждым (говорят: «пробежаться по массиву»). Для этого вам очень полезная вещь — это цикл for . Если вы знаете, что в массиве n элементов (т.е. если у вас есть переменная n и в ней хранится число элементов в массиве), то это делается так:

for i in range(n): . что-то сделать с элементом a[i]

например, вывести все элементы массива на экран:

for i in range(n): print(a[i])

или увеличить все элементы массива на единицу:

for i in range(n): a[i] += 1

и т.п. Конечно, в цикле можно и несколько действий делать, если надо. Осознайте, что это не магия, а просто полностью соответствует тому, что вы знаете про работу цикла for.

Если же у вас нет переменной n , то вы всегда можете воспользоваться специальной функцией len , которая возвращает количество элементов в массиве:

for i in range(len(a)): .

Функцию len , конечно, можно использовать где угодно, не только в заголовке цикла. Например, просто вывести длину массива — print(len(a)) .

Операции на массиве

Еще ряд полезных операций с массивами:

  • a[i] (на всякий случай повторю, чтобы было легче найти) — элемент массива с номером i .
  • len(a) (на всякий случай повторю, чтобы было легче найти) — длина массива.
  • a.append(x) — приписывает к массиву новый элемент со значением x , в результате длина массива становится на 1 больше. Конечно, вместо x может быть любое арифметическое выражение.
  • a.pop() — симметричная операция, удаляет последний элемент из массива. Длина массива становится на 1 меньше. Если нужно запомнить значение удаленного элемента, надо просто сохранить результат вызова pop в новую переменную: res = a.pop() .
  • a * 3 — это массив, полученный приписыванием массива a самого к себе три раза. Например, [1, 2, 3] * 3 — это [1, 2, 3, 1, 2, 3, 1, 2, 3] . Конечно, на месте тройки тут может быть любое арифметическое выражение. Самое частое применение этой конструкции — если вам нужен массив длины n , заполненный, например, нулями, то вы пишете [0] * n .
  • b = a — присваивание массивов. Теперь в b записан тот же массив, что и в a . Тот же — в прямом смысле слова: теперь и a , и b соответствуют одному и тому же массиву, и изменения в b отразятся в a и наоборот. Еще раз, потому что это очень важно. Присваивание массивов (и вообще любых сложных объектов) в питоне не копирует массив, а просто обе переменные начинают ссылаться на один и тот же массив, и изменения массива через любую из них меняет один и тот же массив. При этом на самом деле тут есть многие тонкости, просто будьте готовы к неожиданностям.
  • b = a[1:4] («срез») — делает новый массив, состоящий из элементов старого массива начиная со первого (помните про нумерацию с нуля!) и заканчивая третьим (т.е. до четвертого, но не включительно, аналогично тому, как работает range ); этот массив сохраняется в b . Для примера выше получится [5, -3, 12] . Конечно, на месте 1 и 4 может быть любое арифметическое выражение. Более того, эти индексы можно вообще не писать, при этом автоматически подразумевается начало и конец массива. Например, a[:3] — это первые три элемента массива (нулевой, первый и второй), a[1:] — все элементы кроме нулевого, a[:-1] — все элементы кроме последнего (!), а a[:] — это копия всего массива. И это именно копия, т.е. запись b = a[:] именно копирует массив, получающиеся массивы никак не связаны, и изменения в b не влияют на a (в отличие от b = a ).

Ввод-вывод массива

Как вам считывать массив? Во-первых, если все элементы массива задаются в одной строке входного файла. Тогда есть два способа. Первый — длинный, но довольно понятный:

a = input().split() # считали строку и разбили ее по пробелам # получился уже массив, но питон пока не понимает, что в массиве числа for i in range(len(a)): a[i] = int(a[i]) # прошли по всем элементам массива и превратили их в числа

Второй — покороче, но попахивает магией:

a = list(map(int, input().split()))

Может показаться страшно, но на самом деле map(int, input().split()) вы уже встречали в конструкции

x, y = map(int, input().split())

когда вам надо было считать два числа из одной строки. Это считывает строку ( input() ), разбивает по пробелам ( .split() ), и превращает каждую строку в число ( map(int, . ) ). Для чтения массива все то же самое, только вы еще заворачиваете все это в list(. ) , чтобы явно сказать питону, что это массив.

Какой из этих двух способов использовать для чтения данных из одной строки — выбирать вам.

Обратите внимание, что в обоих способах вам не надо знать заранее, сколько элементов будет в массиве — получится столько, сколько чисел в строке. В задачах часто бывает что задается сначала количество элементов, а потом (обычно на следующей строке) сами элементы. Это удобно в паскале, c++ и т.п., где нет способа легко считать числа до конца строки; в питоне вам это не надо, вы легко считываете сразу все элементы массива до конца строки, поэтому заданное число элементов вы считываете, но дальше не используете:

n = int(input()) # больше n не используем a = list(map(int, input().split()))

Еще бывает, что числа для массива задаются по одному в строке. Тогда вам проще всего заранее знать, сколько будет вводиться чисел. Обычно как раз так данные и даются: сначала количество элементов, потом сами элементы. Тогда все вводится легко:

n = int(input()) a = [] # пустой массив, т.е. массив длины 0 for i in range(n): a.append(int(input())) # считали число и сразу добавили в конец массива

Более сложные варианты — последовательность элементов по одному в строке, заканчивающаяся нулем, или задано количество элементов и сами элементы в той же строке — придумайте сами, как сделать (можете подумать сейчас, можете потом, когда попадется в задаче). Вы уже знаете все, что для этого надо.

Как выводить массив? Если надо по одному числу в строку, то просто:

for i in range(len(a)): print(a[i])

Если же надо все числа в одну строку, то есть два способа. Во-первых, можно команде print передать специальный параметр end=» » , который обозначает «заканчивать вывод пробелом (а не переводом строки)»:

for i in range(len(a)): print(a[i], end=" ")

Есть другой, более простой способ:

print(*a)

Эта магия обозначает вот что: возьми все элементы массива a и передай их отдельными аргументами в одну команду print . Т.е. получается print(a[0], a[1], a[2], . ) .

Двумерные массивы

Выше везде элементами массива были числа. Но на самом деле элементами массива может быть что угодно, в том числе другие массивы. Пример:

a = [10, 20, 30] b = [-1, -2, -3] c = [100, 200] z = [a, b, c]

Что здесь происходит? Создаются три обычных массива a , b и c , а потом создается массив z , элементами которого являются как раз массивы a , b и c .

Что теперь получается? Например, z[1] — это элемент №1 массива z , т.е. b . Но b — это тоже массив, поэтому я могу написать z[1][2] — это то же самое, что b[2] , т.е. -3 (не забывайте, что нумерация элементов массива идет с нуля). Аналогично, z[0][2]==30 и т.д.

То же самое можно было записать проще:

z = [[10, 20, 30], [-1, -2, -3], [100, 200]]

Получилось то, что называется двумерным массивом. Его можно себе еще представить в виде любой из этих двух табличек:

z содержит три элемента, и не важно, что каждый из них тоже массив), а len(z[2]) — длина внутреннего массива на позиции 2 (т.е. 2 в примере выше). Для массива x выше (того, у которого каждый подмассив имеет свою длину) получим len(x)==5 , и, например, len(x[3])==0 .

Аналогично работают все остальные операции. z.append([1,2]) приписывает к «внешнему» массиву еще один «внутренний» массив, а z[2].append(3) приписывает число 3 к тому «внутреннему» массиву, который находится на позиции 2. Далее, z.pop() удаляет последний «внутренний» из «внешнего» массива, а z[2].pop() удаляет последний элемент из «внутреннего» массива на позиции 2. Аналогично работают z[1:2] и z[1][0:1] и т.д. — все операции, которые я приводил выше.

Обход двумерного массива

Конечно, чтобы обойти двумерный массив, надо обойти каждый его «внутренний» массив. Чтобы обойти внутренний массив, нужен цикл for , и еще один for нужен, чтобы перебрать все внутренние массивы:

for i in range(len(z)): # будем теперь обходить массив z[i] for j in range(len(z[i])): . что-то сделаем с элементом z[i][j]

Создание пустого массива

Неожиданно нетривиальная операция на двумерных массивах — это создание двумерного массива определенного размера, заполненного, например, нулями. Вы помните, что одномерный массив длины n можно создавать как [0] * n . Возникает желание написать a = ([0] * m) * n , чтобы создать двумерный массив размера n x m (мы хотим, чтобы первый индекс массива менялся от 0 до n-1 , а второй индекс до m-1 , поэтому это именно ([0] * m) * n , а не ([0] * n) * m ). Но это сработает не так, как вы можете думать. Дело опять в том, что в питоне массивы по умолчанию не копируются полностью, поэтому то, что получается — это массив длина n , в котором каждый элемент соответствует одному и тому же массиву длины n . В итоге, если вы будете менять, например, a[1][2] , то так же будет меняться и a[0][2] , и a[3][2] и т.д. — т.к. все внутренние массивы на самом деле соответствуют одному и тому же массиву.

Поэтому массив размера n x m делается, например, так:

a = [] for i in range(n): a.append([0] * m)

мы вручную n раз приписали к массиву a один и тот же массив.

Или еще есть магия в одну строчку:

a = [[0] * m for i in range(n)]

Я пока не буду объяснять, как это работает, просто можете запомнить. Или пользоваться предыдущим вариантом.

Обратите внимание, что тут важный момент — хотим мы, чтобы n соответствовало первому индексу или второму. В примерах выше n — размер первого индекса (т.е. размер «внешнего» массива), a m — размер второго индекса (т.е. размер каждого «внутреннего» массива). Если вы хотите, то можно делать и наоборот, но это вы сами должны решить и делать согласованно во всей программе.

Ввод-вывод двумерного массива

Обычно двумерный массив вам задается как n строк по m чисел в каждой, причем числа n и m вам задаются заранее. Такой двумерный массив вводится эдакой комбинацией двух способов ввода одномерного массива, про которые я писал выше:

n, m = map(int, input().split()) # считали n и m из одной строки # m дальше не будет нужно a = [] for i in range(n): a.append(list(map(int, input().split())))

Мы считываем очередную строку и получаем очередной «внутренний» массив: list(map(int, input().split())) , и приписываем его ( append ) ко внешнему массиву.

Обратите внимание, что здесь мы уже четко решили, что первый индекс нашего массива соответствует строкам входного файла, а второй индекс — столбцам, т.е. фактически мы уже выбрали левую из двух картинок выше. Но это связано не с тем, как питон работает с двумерными массивами, а с тем, как заданы входные данные во входном файле.

Вывод двумерного массива, если вам его надо вывести такой же табличкой, тоже делается комбинацией способов вывода одномерного массива, например, так:

for i in range(len(a)): print(*a[i])
for i in range(len(a)): for j in range(len(a[i])): print(a[i][j], end=" ") print() # сделать перевод строки

Многомерные массивы

Аналогично двумерным, бывают и трехмерные и т.д. массивы. Просто каждый элемент «внутреннего» массива теперь сам будет массивом:

a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]

Здесь a[0] — это двумерный массив [[1, 2], [3, 4]] , и a[1] — двумерный массив [[5, 6], [7, 8]] . Например, a[1][0][1] == 6 .

Многомерные массивы в простых задачах не нужны, но на самом деле бывают полезны и не представляют из себя чего-то особо сложного. С ними все аналогично тому, что мы обсуждали про двумерные массивы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *