Что не является целым числом
Перейти к содержимому

Что не является целым числом

  • автор:

Целые числа

Представьте плитку шоколада или пиццу, они могут быть целыми или разрезанными на части, так же и с числами! Узнайте, что такое целые числа и как часто мы их используем в нашей жизни.

Более 5500 увлекательных заданий для развития математических способностей и логического мышления — в онлайн‑курсе ЛогикЛайк.

Что такое целые числа

Целые числа — это все положительные, все отрицательные числа и ноль. Никаких дробных частей в целых числах не бывает!

Например, к целым будут относиться числа: -12, -381, -5, 0, 32, 164, 978.

Как вы помните, в математике числа, которые мы используем для счета называются натуральными. Таким образом, можно сказать, что целые числа — это натуральные числа, ноль и отрицательные числа.

Выведем основные заключения:

  • Целое число может быть не только положительным.
  • Число 0 – целое число.
  • Целое число не может включать дробную часть. Значит, такие числа, как 1½, 3 ¼ и 7 ⅚, не являются целыми числами, а 1, 3 и 7 — целыми.
  • Целое число не может включать десятичный элемент. Это означает, что такие числа как 3,5 или 9,12 не являются целыми, а 3 или 9 — целые числа.

Как обозначаются целые числа

Множество целых чисел обозначается буквой «Z».

Множество целых чисел бесконечно, поэтому нельзя определить, сколько всего существует целых чисел. По этой же причине нельзя назвать наибольшее целое число либо наименьшее целое число.

Положительные и отрицательные целые числа

Множество целых чисел состоит из положительных и отрицательных чисел. Рассмотрите числовой луч: справа от нуля находятся положительные числа, а слева — отрицательные числа.

Отрицательные целые числа — это целые числа, которые меньше нуля. Записывают отрицательные числа всегда со знаком минус.
Например: — 12, — 135, — 74, — 3009.

Положительные целые числа — это целые числа, которые больше нуля. Записывают положительные числа без какого-то знака.
Например: 35, 14, 1004, 7286.

Свойства целых чисел при сложении и умножении

Закономерности при выполнении арифметических действий с целыми числами определяют основные свойства целых чисел. Все свойства сложения и умножения натуральных чисел будут подходить и для целых чисел.

Сумма и произведение двух целых чисел всегда будет целым числом. Например, два целых числа 2 и 6.

2 + 6 = 8 — целое число;

2 × 6 = 12 — целое число.

Переместительное свойство

Сумма или произведение целых чисел будут одинаковы, даже если порядок чисел поменять местами.

2 6 = 6 2

Это свойство работает независимо от знака.

2 ( — 6) = ( — 6) 2

Сочетательное свойство

Сложение целого числа с суммой двух целых чисел равно сложению суммы двух первых чисел с третьим.

a + (b + c) = (a + b) + c

5 + (2 + 3) = (5 + 2) + 3

Умножение целого числа на произведение двух целых чисел равно произведению суммы двух первых чисел с третьим.

a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

5 ⋅ (2 ⋅ 3) = (5 ⋅ 2) ⋅ 3

Умножение целого числа на сумму двух целых чисел равно сумме произведений первого со вторым и первого с третьим числом.

a ⋅ (b + c) = a ⋅ b + a ⋅ c

5 ⋅ (2 + 3) = 5 ⋅ 2 + 5 ⋅ 3

При умножении целого числа на ноль результат будет всегда равен нулю.

a ⋅ 0 = 0 или — a ⋅ 0 = 0

5 ⋅ 0 = 0 или — 5 ⋅ 0 = 0

Свойства целых чисел при вычитании

Разность равных целых чисел будет всегда равна нулю.

Распределительное свойство

Вычитание суммы двух целых чисел из другого целого числа.

a — (b + c) = (a — b) — c

Вычитание целого числа из суммы двух целых чисел.

(a + b) — c = (a — с) + b = a + (b — c)

Сочетательное свойство

Умножение целого числа на разность двух целых чисел равно разности произведений первого и второго числа с первым и третьим числом.

a ⋅ (b — c) = a ⋅ b — a ⋅ c

5 ⋅ (6 — 4) = 5 ⋅ 6 — 5 ⋅ 4

Подключайтесь к ЛогикЛайк!

Развивайте логику, интеллект и расширяйте кругозор на сайте Logiclike.com.

ЧИСЛО ЦЕЛОЕ

ЧИСЛО, ЦЕЛОЕ, все положительные или отрицательные ЧИСЛА, не являющиеся ДРОБЯМИ, и НУЛЬ, например, . -3, -2, -1, 0, 1, 2, 3 . Множество целых чисел бесконечно. Положительные целые числа также называются натуральными. Существование отрицательных целых чисел и нуля позволяет производить вычитание любого целого числа из другого целого числа и получать в результате целое число.

Научно-технический энциклопедический словарь .

Смотреть что такое «ЧИСЛО ЦЕЛОЕ» в других словарях:

  • ЦЕЛОЕ ЧИСЛО — ЦЕЛОЕ ЧИСЛО, см. ЧИСЛО ЦЕЛОЕ … Научно-технический энциклопедический словарь
  • ЧИСЛО НАТУРАЛЬНОЕ — ЧИСЛО, НАТУРАЛЬНОЕ, любое из чисел (1, 2, 3, 4 . ) в таком виде, в каком используется при счете. Это самые простые числа, без правильных и десятичных дробей и без мнимых частей. Существует бесконечное количество натуральных чисел. Все они… … Научно-технический энциклопедический словарь
  • число — а/; мн. чи/сла, сел, слам; ср. см. тж. в том числе, числовой, численный 1) Единица счёта, выражающая то или иное количество. Дробное, целое, простое число/. Чётное, нечётное числ … Словарь многих выражений
  • Целое (тип данных) — Целое, целочисленный тип данных (англ. Integer), в информатике один из простейших и самых распространённых типов данных в языках программирования. Служит для представления целых чисел. Множество чисел этого типа представляет собой… … Википедия
  • число — сущ., с., употр. очень часто Морфология: (нет) чего? числа, чему? числу, (вижу) что? число, чем? числом, о чём? о числе; мн. что? числа, (нет) чего? чисел, чему? числам, (вижу) что? числа, чем? числами, о чём? о числах математика 1. Числом… … Толковый словарь Дмитриева
  • Число с плавающей запятой — Число с плавающей запятой форма представления действительных чисел, в которой число хранится в форме мантиссы и показателя степени. При этом число с плавающей запятой имеет фиксированную относительную точность и изменяющуюся абсолютную.… … Википедия
  • число — а; мн. числа, сел, слам; ср. 1. Единица счёта, выражающая то или иное количество. Дробное, целое, простое ч. Чётное, нечётное ч. Считать круглыми числами (приблизительно, считая целыми единицами или десятками). Натуральное ч. (целое положительное … Энциклопедический словарь
  • ЧИСЛО — ЧИСЛО, а, мн. числа, сел, слам, ср. 1. Основное понятие математики величина, при помощи к рой производится счёт. Целое ч. Дробное ч. Действительное ч. Комплексное ч. Натуральное ч. (целое положительное число). Простое ч. (натуральное число, не… … Толковый словарь Ожегова
  • Число с фиксированной запятой — Число с фиксированной запятой формат представления вещественного числа в памяти ЭВМ в виде целого числа. При этом само число x и его целочисленное представление x′ связаны формулой , где z цена (вес) младшего разряда. Простейший… … Википедия
  • ЦЕЛОЕ ЧИСЛО — (integer) Целое число. Огромное множество экономических переменных, например количество фирм в отрасли, которые могут принимать только целочисленные значения; это называется ограничением по целым числам. Экономисты часто просто игнорируют его и… … Экономический словарь

Упр.10.2 ГДЗ Мордкович 8 класс (Алгебра)

Изображение 9.2 а) -10 не является натуральным числом;б) -5,7 не является целым числом;в) 0 не является натуральным числом;г) 2/13 не является целым.

*Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.

*размещая тексты в комментариях ниже, вы автоматически соглашаетесь с пользовательским соглашением

Похожие решебники

Мордкович, Семенов, Александрова

Популярные решебники 8 класс Все решебники

Александрова
Александрова, Загоровская, Богданов
Атанасян 7-9 класс
Атанасян, Бутузов
Драгомилов
Драгомилов, Маш
Бархударов
Бархударов, Крючков, Максимов
Мерзляк, Полонская, Якир

Изображение учебника

©Reshak.ru — сборник решебников для учеников старших и средних классов. Здесь можно найти решебники, ГДЗ, переводы текстов по школьной программе. Практически весь материал, собранный на сайте — авторский с подробными пояснениями профильными специалистами. Вы сможете скачать гдз, решебники, улучшить школьные оценки, повысить знания, получить намного больше свободного времени.

Главная задача сайта: помогать школьникам и родителям в решении домашнего задания. Кроме того, весь материал совершенствуется, добавляются новые сборники решений.

Целые числа: общее представление

В данной статье определим множество целых чисел, рассмотрим, какие целые называются положительными, а какие отрицательными. Также покажем, как целые числа используются для описания изменения некоторых величин. Начнем с определения и примеров целых чисел.

Целые числа. Определение, примеры

Вначале вспомним про натуральные числа ℕ . Само название говорит о том, что это такие числа, которые естественно использовались для счета с незапамятных времен. Для того, чтобы охватить понятие целых чисел, нам нужно расширить определение натуральных чисел.

Целые числа и координатная прямая

Например, число 7 — целое число со знаком плюс, то есть положительное целое число. На координатной прямой это число лежит справа от точки отсчета, за которую принято число 0 . Другие примеры положительных целых чисел: 12 , 502 , 42 , 33 , 100500 .

Определение 3. Отрицательные целые числа

Отрицательные целые числа — это целые числа со знаком «минус».

Примеры целых отрицательных чисел: — 528 , — 2568 , — 1 .

Число 0 разделяет положительные и отрицательные целые числа и само не является ни положительным, ни отрицательным.

Любое число, противоположное положительному целому числу, в силу определения, является отрицательным целым числом. Справедливо и обратное. Число, обратное любому отрицательному целому числу, есть положительное целое число.

Можно дать другие формулировки определений отрицательных и положительных целых чисел, используя их сравнение с нулем.

Определение 4. Положительные целые числа

Положительные целые числа — это целые числа, которые больше нуля.

Определение 5. Отрицательные целые числа

Отрицательные целые числа — это целые числа, которые меньше нуля.

Соответственно, положительные числа лежат правее начала отсчета на координатной прямой, а отрицательные целые числа находятся левее от нуля.

Ранее мы уже говорили, что натуральные числа — это подмножество целых. Уточним этот момент. Множество натуральных чисел составляют целые положительные числа. В свою очередь, множество отрицательных целых чисел является множеством чисел, противоположных натуральным.

Любое натуральное число можно назвать целым, но любое целое число нельзя назвать натуральным. Отвечая на вопрос, являются ли являются ли отрицательные числа натуральными, нужно смело говорить — нет, не являются.

Неположительные и неотрицательные целые числа

Определение 6. Неотрицательные целые числа

Неотрицательные целые числа — это положительные целые числа и число нуль.

Определение 7. Неположительные целые числа

Неположительные целые числа — это отрицательные целые числа и число нуль.

Как видим, число нуль не является ни положительным, ни отрицательным.

Примеры неотрицательных целых чисел: 52 , 128 , 0 .

Примеры неположительных целых чисел: — 52 , — 128 , 0 .

Неотрицательное число — это число, большее или равное нулю. Соответственно, неположительное целое число — это число, меньшее или равное нулю.

Термины «неположительное число» и «неотрицательное число» используются для краткости. Например, вместо того, чтобы говорить, что число a — целое число, которое больше или равно нулю, можно сказать: a — целое неотрицательное число.

Использование целых чисел при описании изменения величин

Для чего используются целые числа? В первую очередь, с их помощью удобно описывать и определять изменение количества каких-либо предметов. Приведем пример.

Пусть на складе хранится какое-то количество коленвалов. Если на склад привезут еще 500 коленвалов, то их количество увеличится. Число 500 как раз и выражает изменение (увеличение) количества деталей. Если потом со склада увезут 200 деталей, то это число также будет характеризовать изменение количества коленвалов. На этот раз, в сторону уменьшения.

Если же со склада ничего не будут забирать, и ничего не будут привозить, то число 0 укажет на неизменность количества деталей.

Очевидное удобство использования целых чисел в отличие от натуральных в том, что их знак явно указывает на направление изменения величины (увеличение или убывание).

Понижение температуры на 30 градусов можно охарактеризовать отрицательным числом — 30 , а увеличение на 2 градуса — положительным целым числом 2 .

Приведем еще один пример с использованием целых чисел. На этот раз, представим, что мы должны отдать кому-то 5 монет. Тогда, можно сказать, что мы обладаем — 5 монетами. Число 5 описывает размер долга, а знак «минус» говорит о том, что мы должны отдать монеты.

Если мы должны 2 монеты одному человеку, а 3 — другому, то общий долг ( 5 монет) можно вычислить по правилу сложения отрицательных чисел:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *